首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tungsten oxide thin films, which are cathodic coloration materials that are used in electrochromic devices, were prepared by a chemical growth method and their electrochromic properties were investigated. The thin films of WO3 were deposited onto electrically conducting substrates: fluorine doped tin oxide coated glass (FTO) with sheet resistance of about 10 Ω/cm. Transparent, uniform and strongly adherent thin film samples of WO3 were studied for their structural, morphological, optical and electrochromic properties. The XRD data confirmed the monoclinic crystal structure of WO3 thin films. The direct band gap Eg for the films was found to be 2.95 eV which is good for electrochromic device application. The electrochromism of WO3 thin film was evaluated in 0.5 M LiClO4/propylene carbonate for Li+ intercalation. Electrochromic properties of WO3 thin films were studied with the help of Cyclic Voltammetry (CV), Chronoamperometry (CA) and Chronocoulometry (CC) techniques.  相似文献   

2.
An ionic porous aromatic framework is developed as a self-degraded template to synthesize the magnetic heterostructure of γ-Fe2O3/WO3·0.5H2O. The Fe3O4 polyhedron was obtained with the two-phase method first and then reacted with sodium tungstate to form the γ-Fe2O3/WO3·0.5H2O hybrid nanostructure. Under the induction effect of the ionic porous network, the Fe3O4 phase transformed to the γ-Fe2O3 state and complexed with WO3·0.5H2O to form the n-n heterostructure with the n-type WO3·0.5H2O on the surface of n-type γ-Fe2O3. Based on a UV-Visible analysis, the magnetic photocatalyst was shown to have a suitable band gap for the catalytic degradation of organic pollutants. Under irradiation, the resulting γ-Fe2O3/WO3·0.5H2O sample exhibited a removal efficiency of 95% for RhB in 100 min. The charge transfer mechanism was also studied. After the degradation process, the dispersed powder can be easily separated from the suspension by applying an external magnetic field. The catalytic activity displayed no significant decrease after five recycles. The results present new insights for preparing a hybrid nanostructure photocatalyst and its potential application in harmful pollutant degradation.  相似文献   

3.
以商业三氧化钨粉末做为钨源,通过合成WOx-EDA(EDA=乙二胺)有机-无机杂化纳米带为前驱物,再加盐酸酸化,迅速得到中间产物正交型钨酸单晶纳米片。再在空气气氛下,将中间产物在管式炉中煅烧2h,最终得到单斜型三氧化钨单晶纳米片。一系列对比实验的结果表明,在由杂化纳米带转变成钨酸纳米片时,反应温度、反应时间、酸化浓度等实验参数对产物的结构和形貌有着很大的影响。通过计算,制得的三氧化钨纳米片带隙为2.48eV。对比于商业三氧化钨粉末,三氧化钨纳米片在可见光降解罗丹明B(RhB)中表现出更优越的性能。  相似文献   

4.
Phase transition from WO3 to sub‐stoichiometric WO2.9 by a facile method has varied the typical semiconductor to be quasi‐metallic with a narrowed band gap and a shifted Femi energy to the conduction band, while maintaining a high crystallinity. The resultant WO2.9 nanorods possess a high total absorption capacity (ca. 90.6 %) over the whole solar spectrum as well as significant photothermal conversion capability, affording a conversion efficiency as high as around 86.9 % and a water evaporation efficiency of about 81 % upon solar light irradiation. Meanwhile, the promising potential of the nanorods for anticancer photothermal therapy have been also demonstrated, with a high photothermal conversion efficiency (ca. 44.9 %) upon single wavelength near‐infrared irradiation and a high tumor inhibition rate (ca. 98.5 %). This study may have opened up a feasible route to produce high‐performance photothermal materials from well‐developed oxides.  相似文献   

5.
Photoelectrochemical (PEC) performance of WO3 photoanodes for water splitting is heavily influenced by the orientation of crystal facets. In this work, mono-particle-layer electrodes, assembled by particulate WO3 square plates with highly uniform alignment along the (002) facet, improved PEC water oxidation kinetics and stability. Photo-deposition of Au along the cracks formed on the surface of the plates, which are the edges of {110} facets, was found to further enhance electron collection efficiency. Combination of these two strategies allowed the facet-engineered WO3 electrode to produce significantly higher efficiencies in charge separation and transfer than the electrode prepared without facet orientation. This work has provided a facile route for fabricating a structurally designed WO3 photoelectrode, which is also applicable to other regularly shaped semiconductor photocatalysts with anisotropic charge migration.  相似文献   

6.
王超  许友  张兵 《无机化学学报》2014,30(7):1575-1581
以商业三氧化钨粉末做为钨源,通过合成WOx-EDA(EDA=乙二胺)无机-有机杂化纳米带为前驱物,再加盐酸酸化,迅速得到中间产物正交型钨酸单晶纳米片。再在空气气氛下,将中间产物在管式炉中煅烧2 h,最终得到单斜型三氧化钨单晶纳米片。一系列对比实验的结果表明,在由杂化纳米带转变成钨酸纳米片时,反应温度、反应时间、酸化浓度等实验参数对产物的结构和形貌有着很大的影响。通过计算,制得的三氧化钨纳米片带隙为2.48 eV。对比于商业三氧化钨粉末,三氧化钨纳米片在可见光降解罗丹明B(RhB)中表现出更优越的性能。  相似文献   

7.
Photo-electrochemical cathodic protection (CP) technology is considered to be a green metallic corrosion protection technology that uses solar energy to protect from corrosion and does not consume any anode materials. In this work, a CdIn2S4/WO3 nanocomposite photoelectrode was prepared, and its photo-electrochemical CP performance and mechanism were studied and analyzed. WO3 has a well band matching with CdIn2S4, leading to a significantly enhanced photo-electrochemical CP performance of the nanocomposite. Meanwhile, as confirmed in this work, the CdIn2S4/WO3 nanocomposite can store photoinduced electrons under light illumination through intercalation reactions and changing the valence state of tungsten. Moreover, it can discharge in the dark state to provide continuous CP for the coupled metals. This research will promote the practical application process of the photo-electrochemical CP technology.  相似文献   

8.
《中国化学快报》2020,31(5):1119-1123
Mesoporous semiconducting metal oxides(SMOs) heterojunctions are appealing sensors for gas detecting.However,due to the different hydrolysis and condensation mechanism of every metal precursor and the contradiction between high crystallinity and high surface area,the synthesis of mesoporous SMOs heterojunctions with highly o rdered mesostructures,highly crystallized frameworks,and high surface area remains a huge challenge.In this work,we develop a novel "acid-base pair"adjusted solvent evaporation induced self-assembly(EISA) strategy to prepare highly crystallized ordered mesoporous TiO_2/WO_3(OM-TiO_2/WO_3) heterojunctions.The WCl_6 and titanium isopropoxide(TIPO) are used as the precursors,respectively,which function as the "acid-base pair",enabling the coassembly with the structure directing agent(PEO-b-PS) into highly ordered meso structures.In addition,PEO-b-PS can be converted to rigid carbon which can protect the meso structures from collapse during the crystallization process.The resultant OM-TiO_2/WO_3 heterojunctions possess primitive cubic mesostructures,large pore size(~21.1 nm),highly crystalline frameworks and surface area(~98 m~2/g).As a sensor for acetone,the obtained OM-TiO_2/WO_3 show excellent re sponse/recovery perfo rmance(3 s/5 s),good linear dependence,repeatability,selectivity,and long-term stability(35 days).  相似文献   

9.
The synthesis of the monoclinic polymorph of {Cu[Hg(SCN)4]}n is reported. The compound, as determined by X-ray diffraction of a twinned crystal, consists of mercury and copper atoms linked by μ1,3-SCN bridges. The crystal packing shows a highly porous infinite 3D structure. Diagnostic resonances for the SCN- ligand and metal-ligand bonds in the IR, far-IR and Raman spectra are assigned and discussed. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that the compound is an indirect band gap semiconductor. The DFT calculations show that the observed luminescence of the compound arises mainly from an excited LLCT state with small MLCT contributions (from the copper to unoccupied π? orbital of the thiocyanate groups). The X-band EPR spectrum of the powdered sample at room temperature reveals an axial signal with anisotropic g factors consistent with the unpaired electron of Cu(II) ion in the dx2y2 orbital.  相似文献   

10.
Topological crystalline insulators (TCIs) are a new quantum state of matter in which linearly dispersed metallic surface states are protected by crystal mirror symmetry. Owing to its vanishingly small bulk band gap, a TCI like Pb0.6Sn0.4Te has poor thermoelectric properties. Breaking of crystal symmetry can widen the band gap of TCI. While breaking of mirror symmetry in a TCI has been mostly explored by various physical perturbation techniques, chemical doping, which may also alter the electronic structure of TCI by perturbing the local mirror symmetry, has not yet been explored. Herein, we demonstrate that Na doping in Pb0.6Sn0.4Te locally breaks the crystal symmetry and opens up a bulk electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. Na doping in Pb0.6Sn0.4Te increases p‐type carrier concentration and suppresses the bipolar conduction (by widening the band gap), which collectively gives rise to a promising zT of 1 at 856 K for Pb0.58Sn0.40Na0.02Te. Breaking of crystal symmetry by chemical doping widens the bulk band gap in TCI, which uncovers a route to improve TCI for thermoelectric applications.  相似文献   

11.
采用浸渍沉淀法制备出WO3-碳纳米管(WO3-CNTs)纳米复合材料, 微波辅助乙二醇法在其表面负载活性成分Pt, 得到纳米Pt/WO3-CNTs 催化剂. 采用X射线衍射(XRD), 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等测试手段对催化剂的结构和形貌进行表征, 结果表明Pt 纳米粒子为面心立方晶体结构, 粒径大小在3-5 nm之间, 均匀地分布在WO3-CNTs 纳米复合材料表面, 同时发现催化剂中的Pt 主要以金属态的形式存在. 采用循环伏安和计时电流法研究了在酸性溶液中Pt/WO3-CNTs 催化剂对甲醇的电催化氧化性能, 结果表明Pt/WO3-CNTs 催化剂比用硝酸处理的碳纳米管载铂催化剂(Pt/CNTs)对甲醇呈现出更高的电催化氧化活性和抗CO中毒性能.  相似文献   

12.
The activity of WO3 photoanode could be improved efficiently after loading MnOx by photodeposition. The maximum photocurrent density of composite photoanode is achieved with a deposition time of 3 min, which is higher than that of pristine WO3 photoanode around 40%.  相似文献   

13.
The comparison of IR-spectra of tellurite glasses and their crystal products containing from 5 up to 45 mol% WO3 indicates that the modifier does not change the coordination of tellurium. The IR-spectra of glasses containing small WO3 amounts show a band at 925 cm?1, which shifts up to 950 cm?1 with the increase in the tungsten concentration. The effect is specific of the vitreous state and may be explained by the change in the coordination of tungsten.  相似文献   

14.
通过简单水热制备了大小均一,直径约为2.5 μm的球状Bi2WO6粉体.系统研究表面活性剂SDS和PVP对水热制备Bi2WO6光催化剂的影响.利用XRD,EDS,SEM,TEM和DRS等分析技术对催化剂的组成、形貌、比表面积和带隙宽度等进行了表征.实验结果表明,表面活性剂对催化剂的形貌和催化活性有较大影响.在水热制备过...  相似文献   

15.
In this work, we report a novel AgBi(WO4)2–Bi2WO6 heterostructure, which was designed and synthesized by using a simple hydrothermal method. Methyl orange was used as a representative dye indicator to evaluate the visible‐light catalytic activity and the catalytic mechanism was investigated. The as‐synthesized AgBi(WO4)2–Bi2WO6 composite displayed a 43 times higher photocatalytic activity than Bi2WO6. Owing to the matched band gap and distinctive heterostructure, AgBi(WO4)2–Bi2WO6 reveals a high visible‐light response and high‐efficiency utilization of both photogenerated electrons and holes. AgBi(WO4)2 reveals a similar energy level to and good lattice match with Bi2WO6, which are favorable qualities for band bending and fluent electron transfer. Furthermore, the photoexcited electrons can produce oxygen to generate .O2? radicals, which is vital for the overall utilization of both holes and electrons. This is the first example of AgBi(WO4)2 being used as photocatalytic material.  相似文献   

16.
We report the first electrochemical anodization of RF (radio-frequency) sputtered tungsten (W) thin films. High pressure sputtering was utilized to produce W films of low intrinsic stress with a high degree of adhesion to the transparent substrates. Structurally and uniformly porous tungsten trioxide (WO3) films were obtained under optimised anodization conditions in fluoride ion-containing electrolyte. Crystalline WO3 was obtained after annealing the films at 450 °C. SEM and XRD characterisation techniques were used to determine the surface morphology and crystal structure of the non-anodized and anodized films.  相似文献   

17.
Exploring advanced electrocatalysts for electrocatalytic hydrogen evolution is highly desired but remains a challenge due to the lack of an efficient preparation method and reasonable structural design. Herein, we deliberately designed novel Ag/WO3?x heterostructures through a supercritical CO2‐assisted exfoliation‐oxidation route and the subsequent loading of Ag nanoparticles. The ultrathin and oxygen vacancies‐enriched WO3?x nanosheets are ideal substrates for loading Ag nanoparticles, which can largely increase the active site density and improve electron transport. Besides, the resultant WO3?x nanosheets with porous structure can form during the electrochemical cycling process induced by an electric field. As a result, the exquisite Ag/WO3?x heterostructures show an enhanced hydrogen evolution reaction (HER) activity with a low onset overpotential of ≈30 mV, a small Tafel slope of ≈40 mV dec?1 at 10 mA cm?2, and as well as long‐term durability. This work sheds light on material design and preparation, and even opens up an avenue for the development of high‐efficiency electrocatalysts.  相似文献   

18.
The photocatalytic ability of ZnO is improved through the addition of flower-like Bi2WO6 to prepare a Bi2WO6/ZnO composite with visible light activity. The composite is characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. After modification, the band gap energy of Bi2WO6/ZnO is reduced from 3.2 eV for ZnO to 2.6 eV. Under visible light irradiation, the Bi2WO6/ZnO composite shows an excellent photocatalytic activity for degrading methylene blue (MB) and tetracycline. The photo-degradation efficiencies of (0.3:1) Bi2WO6/ZnO for MB and tetracycline are approximately 246 and 4500 times higher than those of bare ZnO, respectively, and correspondingly, the photo-degradation rates for the two pollutants are approximately 120 and 200 times higher than those with bare ZnO, respectively. Moreover, the photocatalyst of (0.3:1) Bi2WO6/ZnO exhibits a higher transient photocurrent density of approximately 4.5 μA compared with those of bare Bi2WO6 and ZnO nanoparticles. The successful recombination of Bi2WO6 and ZnO enhances the photocatalytic activity and reduces the band gap energy of ZnO, which can be attributed to the effective separation of electron–hole pairs. Active species trapping experiments display that [O2]? is the major species involved during photocatalysis rather than ?OH and h+. This study provides insight into designing a meaningful visible-light-driven photocatalyst for environmental remediation.  相似文献   

19.
The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2, indicating a transparency edging nearly 180 nm shorter than that of AgGaS2), which gives Li0.60Ag0.40GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60Ag0.40GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy‐favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors.  相似文献   

20.
二水合氧化钨(WO3·2H2O)因其独特的层状结构且富含层间结构水,与无水WO3相比显示出更加优异的电致变色性能。我们采用简单、无模板的阴极电化学沉积方法,成功在氧化铟锡(ITO)导电玻璃基底上制备了WO3·2H2O薄膜。通过改变电沉积液中过氧化氢(H2O2)的加入量优化沉积液的成分,获得了具有纳米多孔结构的薄膜。由此制备的WO3·2H2O薄膜显示出大的光学对比度(633 nm处的光学对比度大于90%)、快速的响应速度(着色、褪色时间均小于10 s),以及良好的循环稳定性(经10 000次循环后,光学对比度仍保持在90%左右)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号