首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile approach of polypyrrole (PPy)/tungsten oxide (WO3) composites electrosynthesized in ionic liquids for fabrication of electrochromic devices is discussed. The electrochromic properties of PPy/tungsten oxide nanocomposite films (PPy/WO3) prepared in the presence of four different ionic liquids, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were investigated in detail. Cyclic voltammetry results revealed that PPy/WO3 nanocomposite films have much more electrochemical activity than those of WO3 and PPy film. The electrochromic contrast, coloration efficiency, and switching speed of the composite films were determined for electrochromic characteristics. The maximum contrast and the maximum coloration efficiency values were measured as 33.25% and 227.89 cm2/C for the PPy/WO3/BMIMTFSI composite film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The characterisation of electrochemical behaviour of electrochromic (EC) devices based on solution thermolysed (ST) tungsten oxide (WO3) thin films was carried out using the step potential excitation method. The method, based on generating plots of current density (J) as a function of passed charge (ΔQ), has been applied for the characterisation of EC-WO3 thin films in proton-containing aqueous electrolyte. EC devices have been fabricated by employing WO3 thin films with variable thickness (T) ranging from 0.04 to 0.52 μm. The J vs time (t) responses (chronoamperometry) of these devices were recorded at a fixed applied potential (±0.7 V vs S.C.E.) and values of total passed H+ charges (ΔQ) into the WO3 host lattice during the coloration process are calculated. The J-ΔQ curves corresponding to films of different thickness were plotted as a function of the passed charge volume density, ΔQ /T, and an intercalatable film thickness is calculated to be 0.13 μm. The modulation in optical transmittance after coloration and bleaching was studied in the wavelength range between 350 and 850 nm and an optical efficiency (ξλ) is calculated at λ=700 nm. It is found that the ξλ wanes with increasing intercalation. Electronic Publication  相似文献   

3.
Sol–gel derived tungsten oxide (WO3) films have been deposited by spin coating route using acetylated peroxotungstic acid (APTA) or a mixture of APTA and polyethylene glycol (PEG) dissolved in ethanol as the precursor solution, followed by thermal treatment in air. The influence of PEG additive and annealing temperature on the structural and electrochromic (EC) behavior of the films have been investigated. For films annealed at 300 °C, a porous nanocrystalline/amorphous microstructure was obtained in the WO3-PEG film, while monoclinic microstructure was formed in the pure WO3 film. Moreover, for the WO3-PEG films, the film microstructure was found to depend on the annealing temperature. Electrochemical studies indicate that the WO3-PEG film annealed at 300 °C (WP-300) exhibits superior EC properties, which produces faster switching speed (t c = 19 s, t b = 3 s),better reversibility (K = 0.97) as well as higher optical modulation (ΔT = 32% at 550 nm) and coloration efficiency (η = 22 cm2/C at 550 nm). Our results suggest that PEG addition in combination with an appropriate annealing treatment can benefit the EC properties, arising from the ease of ion diffusion within the EC material, as evident from the nanocrystallines embedded into the amorphous matrix with a porous character.  相似文献   

4.
《Electroanalysis》2018,30(9):2099-2109
Tungsten trioxide‐poly(3,4‐ethylenedioxythiophene) (WO3‐PEDOT) and tungsten trioxide‐polyfuran (WO3‐PFu) were prepared by rf rotating plasma polymerization. Electrochromic hybrid thin films were fabricated onto flexible polyethylene terephthalate (PET)/ indium tin oxide (ITO) film using electron beam evaporation method. In order to deeply characterize all films, scanning electron microscopy‐energy dispersive X‐ray spectroscopy (SEM‐EDS) and electrochemical impedance spectroscopy (EIS) techniques were used. The counter electrode effect on plasma modified WO3 nano hybrids‐based electrochromic devices (ECDs) was evaluated. By incorporating flexible vanadium pentoxide (V2O5) film as counter electrode, complementary ECDs were constructed through combining the hybrid flexible films (WO3‐PEDOT, WO3‐PFu) as working electrodes, which exhibit highly efficient electrochromic performance with low voltage operation. Especially, WO3‐PEDOT/V2O5‐based ECD owns a high optical modulation of 61.5 % at 750 nm driven by −1.0 V (coloration) and +1 V (bleaching) with fast response times (coloration time: 13.58 s, bleaching time: 8.07 s) and a high coloration efficiency of 527 cm2 C−1. This study can supply useful and efficient avenue for designing flexible complementary electrochromic device for energy‐saving flexible electronics.  相似文献   

5.
Multilayer films based on tungsten oxide (WO3), ITO (indium tin oxide) and CdS were deposited mainly by reactive dc magnetron sputtering onto glass substrates for electrochromic application. The thin films were analyzed by means of XPS (X-ray photoelectron spectroscopy), GIXD (grazing incidence X-ray diffraction) and XRD (X-ray diffraction). XRD and XPS results confirmed that the films were WO3, CdS and ITO, respectively. The surface and interface of the CdS/ITO bi-layered film was studied by GIXD in different incidence angles. Detailed results about the amorphous characterization of the films during room temperature growth and post annealing are given.  相似文献   

6.
WO3 and WO3:P (5 mol% H3PO4) thin films were prepared using the sol-gel route and the electrochromic properties of the films were investigated using in situ spectroelectrochemical methods. The measurements were performed in propylene carbonate solution with 0.1 M LiClO4 as electrolyte. During the cathodic polarization at –0.8 V a blue coloration is observed with a reversible variation between 14% and 84% of the transmittance at λ=633 nm. The kinetics for the bleaching process is faster for the WO3:P film than for the undoped WO3 film. Electronic Publication  相似文献   

7.
An investigation was conducted into the electrochromic properties of organotungsten oxide WO x C y films synthesized onto 60 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates using low temperature, plasma-enhanced chemical vapor deposition (PECVD) at varying oxygen concentrations. The PECVD-synthesized WO x C y films were proven to offer remarkable electrochromic performance. Cyclic voltammetry switching measurements revealed that only low driving voltages from −1 to 1 V are needed to provide reversible Li+ ion intercalation and de-intercalation in a 0.1 M LiClO4–PC electrolyte. Light modulation with transmittance variation of up to 72.9% and coloration efficiency of 62.5 cm2/C at a wavelength of 650 nm was obtained.  相似文献   

8.
WO3/chitosan and WO3/chitosan/poly(ethylene oxide) (PEO) films were prepared by the layer-by-layer method. The presence of chitosan enabled PEO to be carried into the self-assembled structure, contributing to an increase in the Li+ diffusion rate. On the basis of the galvanostatic intermittent titration technique (GITT) and the quadratic logistic equation (QLE), a spectroelectrochemical method was used for determination of the “optical” diffusion coefficient (Dop), enabling analysis of the Li+ diffusion rate and, consequently, the coloration front rate in these host matrices. The Dop values within the WO3/chitosan/PEO film were significantly higher than those within the WO3/chitosan film, mainly for higher values of injected charge. The presence of PEO also ensured larger accessibility to the electroactive sites, in accordance with the method employed here. Hence, this spectroelectrochemical method allowed us to separate the contribution of the diffusion process from the number of accessible electroactive sites in the materials, thereby aiding a better understanding of the useful electrochemical and electrochromic properties of these films for use in electrochromic devices.  相似文献   

9.
Tungsten trixoide/titania (WO3-titania) composite thin films with W/Ti molar ratios of 100/0, 98/2, 96/4, 94/6 92/8 and 90/10 were prepared on fluorine-doped tin oxide conducting glass, and their electrochromic (EC) and photoelectrochromic (PEC) performances were investigated in this study. The composite thin films were synthesized by sol–gel process using peroxotungstic acid and titanium (IV) n-butoxide as the precursors. The surface morphology and composition of the composite thin films were characterized using scanning electron microscope with energy dispersive spectrometer. Electrochemical experiments with in situ spectroscopic measurement were employed to study the EC properties of the composite thin films. It was found that the presence of titania in the WO3 matrix might slightly decreases its EC performance. PEC cells using the composite thin films as the working electrode and a sputtered semitransparent platinum thin film on ITO as the counter electrode were fabricated and their PEC performances were investigated. The device using composite thin film prepared from sol solution with a W/Ti molar ratio of 96/4 exhibited the best PEC performance.  相似文献   

10.
Iridium oxide (IrOx) has been widely studied due to its applications in electrochromic devices, pH sensing, and neural stimulation. Previous work has demonstrated that both Ir and IrOx films with porous morphologies prepared by sputtering exhibit significantly enhanced charge storage capacities. However, sputtering provides only limited control over film porosity. In this work, we demonstrate an alternative scheme for synthesizing nanoporous Ir and activated IrOx films (AIROFs). This scheme utilizes atomic layer deposition to deposit a thin conformal Ir film within a nanoporous anodized aluminum oxide template. The Ir film is then activated by potential cycling in 0.1 M H2SO4 to form a nanoporous AIROF. The morphologies and electrochemical properties of the films are characterized by scanning electron microscopy and cyclic voltammetry, respectively. The resulting nanoporous AIROFs exhibit a nanoporous morphology and enhanced cathodal charge storage capacities as large as 311 mC/cm2.  相似文献   

11.
Molybdenum trioxide (MoO3) films were deposited on ITO/Glass substrates by the sol–gel method using a spin-coating technique and heat treated at various temperatures under different ambient atmosphere. Effects of the process parameters on the electrochromic properties of MoO3 films were studied using cyclic voltammetry (CV) in a propylene carbonate (PC) non-aqueous solution containing 1 M lithium perchlorate (LiClO4). Electrochromic MoO3 film on lithium intercalation was investigated by in-situ transmittance measurement during the CV process. The MoO3 films showed reversible recharge ability on Li+/e intercalation/deintercalation. Experimental results revealed that the heat-treatment temperature, the ambient atmosphere, and the thickness will have the string influence on the electrochromic properties of MoO3 thin films. X-ray diffraction (XRD) results show that the amorphous MoO3 films can be obtained with the heat-treatment temperature below 300 °C in O2 ambient atmosphere. The optimum electrochromic MoO3 film, with a thickness of 130 nm, exhibits a maximum transmittance variation (ΔT%) of 30.9%, an optical density change (ΔOD) of 0.213, an intercalation charge (Q) of 8.47 mC/cm2, an insertion coefficient x in Li x MoO3 was 0.21 and a coloration efficiency (η) of 25.1 cm2/C between the colored and bleached states at a wavelength (λ) of 550 nm.  相似文献   

12.
二水合氧化钨(WO3·2H2O)因其独特的层状结构且富含层间结构水,与无水WO3相比显示出更加优异的电致变色性能。我们采用简单、无模板的阴极电化学沉积方法,成功在氧化铟锡(ITO)导电玻璃基底上制备了WO3·2H2O薄膜。通过改变电沉积液中过氧化氢(H2O2)的加入量优化沉积液的成分,获得了具有纳米多孔结构的薄膜。由此制备的WO3·2H2O薄膜显示出大的光学对比度(633 nm处的光学对比度大于90%)、快速的响应速度(着色、褪色时间均小于10 s),以及良好的循环稳定性(经10 000次循环后,光学对比度仍保持在90%左右)。  相似文献   

13.
We prepared PTA coating solution by hot plate evaporation, N2 bubbling evaporation, and rotary evaporation. N2 bubbling and rotary evaporation are very efficient way to synthesize PTA which reduces the synthesis process time to 1/5, compared to hot plate evaporation method. Another strong point is that N2 bubbling and rotary evaporation make it possible to control excess hydrogen peroxide and water contents in PTA. The PTA formula were WO3·0.13H2O2·10.0H2O for hot plate method, WO3·0.16H2O2·7.1H2O for N2 bubbling method, and WO3·0.15H2O2·3.00H2O for rotary evaporation method. Thermal analysis and mass spectroscopy analysis show that water is evaporated at around 100 °C and hydrogen peroxide is dissociated at the range of 150 and 250 °C. Amorphous phase of WO3 thin film prepared from rotary evaporated PTA solution has the best electrochromic property, light transmission difference from 91% at its bleached state and 5.5% colored state, and charge density of 22 mC/cm2. It is thought that the control of excess hydrogen peroxide and water contents in PTA is very important to enhance the electrochromic properties of WO3 thin film.  相似文献   

14.
《Electroanalysis》2017,29(6):1573-1585
In this paper, we demonstrate that the double‐step chronoamperometry and chronocoulometry techniques are efficient tools for characterizing the basic electrochromic performance of WO3 films (i. e., coloration/bleaching conversion, charge capacity and coloration efficiency). In combination with in situ spectroelectrochemical study, the variations in the optical modulation and charge capacity of the WO3 film under different potential windows were attributed to different ion diffusion depths and the quantity of WO3 sites participating in the redox reaction. Moreover, the double‐step techniques have distinctive advantages for analyzing the cyclic mechanism of the WO3 film. When the inserted Li+ ions in the coloration process cannot be completely extracted from the film in the next bleaching process, these ions accumulate in the film upon cycling, leading to the degradation of the electrochromic performance. Here the accumulated ions are referred to as “unrecoverable ions”. The abundant formation of unrecoverable ions may be due to incomplete reduction of a portion of Lix WO3, which is caused by collapse of the Li+ ion diffusion channels in the deep of film after repeated cycles. All these results support that the double‐step chronoamperometry and chronocoulometry techniques have significant advantages to analyze the cyclic stability and explore the degradation mechanism of electrochromic WO3 films.  相似文献   

15.
二水合氧化钨(WO3·2H2O)因其独特的层状结构且富含层间结构水,与无水WO3相比显示出更加优异的电致变色性能。我们采用简单、无模板的阴极电化学沉积方法,成功在氧化铟锡(ITO)导电玻璃基底上制备了WO3·2H2O薄膜。通过改变电沉积液中过氧化氢(H2O2)的加入量优化沉积液的成分,获得了具有纳米多孔结构的薄膜。由此制备的WO3·2H2O薄膜显示出大的光学对比度(633nm处的光学对比度大于90%)、快速的响应速度(着色、褪色时间均小于10s),以及良好的循环稳定性(经10000次循环后,光学对比度仍保持在90%左右)。  相似文献   

16.
Tungsten oxide (WO3) films were deposited on indium tin oxide glass by reactive DC magnetron sputtering of a tungsten target in an oxygen and argon atmosphere at different substrate temperatures. Infrared reflectance modulation properties of the films were investigated in the wavelength range of 2.5–25 μm. The morphology and structure of the films are strongly dependent on the substrate temperature, and therefore have a great influence on infrared reflectance modulation properties. The charge capacity and diffusion coefficient of H+ ions in WO3 films decrease, and the infrared reflectance modulation and color efficiency first increase and then decrease with increasing the deposition temperature. The values achieve a maximum of 40% and 18.5 cm2 C−1, respectively, at 9 μm and 250 °C.  相似文献   

17.
The preparation of electrochromic films of mesoporous tungsten trioxide from tungstic acid and tungstic hexaethoxide precursors with the addition of an organic stabiliser via a sol-gel method is reported. These films have been structurally characterised and both the film morphology and crystalline composition of the films were found to be significantly dependent on the temperature at which the films were annealed and upon the choice of precursor. Films annealed at lower temperatures consisted of amorphous and hexagonal tungsten trioxide, whereas films annealed above 500 °C comprised solely of monoclinic WO3. The electrochromic activity of the films was found to be equally dependent on method of preparation, and both the composition and the structure of the WO3 films were shown to clearly influence the colouration efficiency of the films.Dedicated to Zbigniew Galus on the occasion of his 70th birthday.  相似文献   

18.
Thin films of tungsten trioxide (WO3) for electrochromic application were synthesized by potentiostatic method by using a peroxytungstic acid as a solution precursor. The morphology of the films with and without postthermal annealing was analyzed by atomic force microscopy. When they were in contact with the liquid electrolyte (LiI in propylene carbonate, PC) and under alternatively applied negative (−1.5 V) and positive (+1.0 V) potentials, the transient optical transmittance modulations at wavelength of 650 nm of the as-deposited and 60 °C annealed WO3 samples were higher than that of 100 °C annealed WO3 films, and the switching times between the colored and bleached states were related to the surface morphology of the WO3 films. In polymeric gel electrolyte (LiI and polymethyl methacrylate in PC) devices, longer time was required for complete coloration as well as bleaching process compared with the liquid one. A parametric analysis was made for each of the transient optical transmittance curves of WO3-based electrochromic devices to extract the values of the response time in coloration (reduction) and bleaching (oxidation) processes. It concludes that the coloration process was determined by the exchange of current density at the electrolyte–WO3 interface and a possible inhomogeneous interfacial potential for ion intercalation retards the effective coloration time. The bleaching process seems to be controlled by the space charge-limited lithium ion diffusion in WO3 electrode and the ionic conductivity of the electrolyte as well.  相似文献   

19.
We report electrochromic properties of WO3 in Au–WO3 and Pt–WO3 nanostructure thin-film electrodes prepared by co-sputtering deposition method. The nanostructure electrodes consisted of Au or Pt metallic nanophase and a tungsten oxidative phase, indicating the formation of crystalline metallic nanophases in the amorphous oxide matrix. In particular, due to metallic nanophases, the modified electrochromic properties of WO3 were observed in the Au–WO3 and Pt–WO3. The nanostructure electrodes showed a reverse optical modulation with respect to applied potentials in H2SO4 solution compared to that of pure WO3 electrode. However, due to an excellent electrocatalytic activity of platinum for methanol electrooxidation at 25 °C, the electrochromism of the Pt–WO3 in contrast with that of the Au–WO3 was affected by the potentials for methanol electrooxidation in 2 M CH3OH and 0.5 M H2SO4.  相似文献   

20.
Nickel oxide thin films, which are well known anodic coloration materials that are used in electrochromic devices, were prepared by a sol–gel method, and their electrochemical and electrochromic properties were investigated. The sol was prepared from Ni(OH)2 powder with an average size of 7 nm, in a mixture of ethylene glycol and absolute ethanol. The films were coated on an ITO substrate using the powder, dispersed in the solution. When additive materials, acetyl acetone and glycerol, were added to the sol its hardness and adhesion properties were improved. The optimized thin film formed an amorphous, porous structure, and showed a large current density during continuous potential and pulse potential cycling. The film also was transparent and had a high coloration efficiency (33.5 cm2/C) and a rapid response time (1.0–2.5 s) during the coloring/bleaching process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号