首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王娜  苗頔  李洪伟  方庆红  陈尔凡 《化学学报》2010,68(22):2356-2362
通过单体插层原位本体聚合的方法, 制备了多种不同含量的聚甲基丙烯酸甲酯(PMMA)/蒙脱土/介孔分子筛(无模板剂)复合材料. 研究了不同结构填料与基体间的界面作用, 以及不同结构填料的比例变化对复合材料性能的影响. 研究结果表明: 有机蒙脱土(OMMT)与介孔分子筛MCM-41(无模板剂)共同作为填料, 与基体发生较强的界面效应, 形成新型网络复合结构, 两种粒子起到了协同增强作用|当有机蒙脱土(OMMT)/介孔分子筛(MCM-41)混合填料(比例为1∶1)含量为0.5%时, PMMA基纳米复合材料的拉伸强度达到最大值49.0 MPa, 比PMMA提高了15%|同时添加OMMT和MCM-41的PMMA基纳米复合材料的热稳定性高于单独添加OMMT或MCM-41的PMMA基复合材料.  相似文献   

2.
利用锥形量热仪(CONE)在35kW/m2热辐照条件下,并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对聚丙烯(PP)/乙烯-醋酸乙烯酯共聚物(EVA)/有机蒙脱土(OMMT)纳米复合材料和加入无卤复配阻燃剂制备的PP/EVA/OMMT/氢氧化铝(ATH)/三氧化二锑(AO)纳米复合阻燃材料的热释放速率、烟释放及材料在燃烧时的质量损失行为进行了研究。结果表明,添加5%(质量分数)OMMT可以提高PP/EVA复合材料的阻燃性能,燃烧时的热释放速率、质量损失率以及烟释放量减少,且OMMT与无卤复配阻燃剂之间可产生阻燃协同作用,使纳米复合阻燃材料的阻燃性能、热稳定性和抑烟性进一步增强。  相似文献   

3.
蒙脱土/二氧化钛复合颗粒电流变液材料的制备及其性能   总被引:2,自引:1,他引:2  
向礼琴  赵晓鹏 《化学学报》2003,61(11):1867-1871
利用溶胶-凝胶法制备了一种新型的蒙脱土/二氧化钛(MMT/TiO_2)复合电流变 颗粒材料,FT-IR,XRD,SEM分析表明TiO_2以纳米晶的形态包覆于蒙脱土表面。电 流变性能测试表明,MMT/TiO_2复合颗粒的电流变效应比纯蒙脱土电流变液有显著 提高,当颗粒体积分数为25%,直流电场强度为3kV/mm时,TiO_2质量分数为22.7% 的MMT/TiO_2复合颗粒电流变液的静态屈服应力达8.3kPa,此值约为纯蒙脱土电流 变液的4倍。同时发现TiO_2包覆量对电流变效应有重要影响。  相似文献   

4.
利用自制的有机蒙脱土 ,采用浇模固化成型法制备酚醛树脂 /六次甲基四胺 /蒙脱土纳米复合材料 ,并用XRD观察有机蒙脱土分别在热塑性和热固性酚醛树脂中复合行为 .研究发现 ,由于两种树脂的固化反应机理不同 ,热固性酚醛树脂与蒙脱土复合 ,可得插层型纳米复合材料 ;而采用热塑性酚醛树脂进行固化 ,则得到部分剥离的纳米复合材料 .通过DSC进一步研究热塑性酚醛树脂 /蒙脱土复合体系的固化反应动力学 .运用Kissinger ,Flynn Wall Ozawa ,Crane方法求出活化能和反应级数等动力学参数 .结果发现 ,加入蒙脱土使固化反应活化能下降 ,反应级数减小 ,从而有利于固化工艺的实现 ,便于纳米复合材料实际应用 .  相似文献   

5.
Ag-TiO2/蒙脱土复合纳米光催化剂的研究   总被引:8,自引:0,他引:8  
本文以蒙脱土(简称MMT)为载体,利用四氯化钛水解法将纳米TiO2引入到蒙脱土层间,经500℃煅烧后得到稳定结构的TiO2柱撑蒙脱土,再通过化学还原法将金属银负载于其上,合成出载银/二氧化钛柱撑蒙脱土复合光催化剂(Ag-TiO2/MMT).通过XRD、IR、BET、AAS等分析方法对复合光催化剂的物相组成、键合状况、比表面积、元素含量等物化性质进行了表征.对降解亚甲基蓝的光催化活性测试表明具有如下的光催化活性序列:Ag-TiO2/MMT>TiO2/MMT>TiO2(P25),其中Ag-TiO2/MMT由于柱化后具有较大的比表面积和Ag的负载改性而具有最高的光催化活性.  相似文献   

6.
朱雪丹  张光华  张万斌 《应用化学》2009,26(12):1414-1417
采用蒙脱土(MMT)改性聚苯乙烯-丙烯酸酯(PSB)乳液制备了一种新型表面施胶剂。 比较了不同方法合成的乳液在性能上的异同。 采用X射线衍射(XRD)和透射电子显微镜(TEM)测试技术表征了复合材料的结构。 研究了苯丙/蒙脱土纳米复合乳液作为表面施胶剂对纸张的物理性能和抗水性能的影响。 结果表明,聚合法制备的复合乳液中蒙脱土片层已发生剥离并在复合物中呈现纳米级分散。 纳米复合乳液与淀粉以质量比1∶10(绝干)复配进行表面施胶时,纸张的施胶度、挺度和环压强度比纯苯丙施胶剂分别提高1.8倍、45.5%和44%。  相似文献   

7.
高密度聚乙烯/蒙脱土纳米复合材料膨胀阻燃体系的性能   总被引:1,自引:0,他引:1  
使用以乙烯/醋酸乙烯共聚物(EVA)为相容剂的高密度聚乙烯/蒙脱土(HDPE/OMT)纳米复合材料作为基体,制备了含不同成炭剂的聚磷酸铵(APP)膨胀阻燃体系,对其阻燃性能进行了比较和研究,并分析了蒙脱土与膨胀阻燃剂协效作用的机理。热重分析(TGA)、垂直燃烧(UL-94)、极限氧指数(LOI)、锥形量热计结果表明:APP/季戊四醇(PER)体系熔融过程较短可形成蒙脱土增强炭层;PER/PA/OMT体系中较高的有机物含量有利于蒙脱土迁移和堆积。  相似文献   

8.
非等温结晶动力学;聚丙烯/聚(丙烯-g-马来酸酐)/蒙脱土纳米复合材料结晶动力学研究  相似文献   

9.
利用静电相互作用在玻璃纤维(GF)表面分别复合纳米二氧化硅(SiO2)和多壁碳纳米管(MWNTs),制备了GF-SiO2、GF-MWNTs复合增强体,并通过转矩流变仪制备了尼龙6(PA6)/GF-SiO2和尼龙6(PA6)/GF-MWNTs复合材料.利用扫描电子显微镜(SEM),示差扫描量热仪(DSC),热机械分析仪(DMA)等手段研究了复合材料的微观结构、热学及力学性能.结果表明,静电复合的方法可以使纳米二氧化硅(nano-SiO2)、多壁碳纳米管(MWNTs)在GF表面达到均匀吸附,复合增强体能加快尼龙6的结晶速度,并使材料的玻璃化温度、动态模量、拉伸强度、结晶温度等明显提高,其中GF-MWNTs对复合材料性能的提高最明显,拉伸强度提升了21%,模量提高了28%.  相似文献   

10.
聚氧化乙烯/蒙脱土纳米嵌入化合物的制备与结构表征   总被引:9,自引:1,他引:8  
利用溶液法和熔融法制备聚氧化乙烯(PEO)/蒙脱土纳米嵌入化合物,用XRD、IR和DSC等测试手段对嵌入化合物进行了表征.嵌入的PEO分子同蒙脱土晶层中的Na+生成PEO-Na+络合物,嵌入化合物具有一定的耐溶剂萃取性,PEO分子以单层螺旋构象排列于蒙脱土的晶层中.PEO分子在蒙脱土层间运动受到限制,致使嵌入化合物的结晶熔融峰减弱.  相似文献   

11.
郑易安  王爱勤 《应用化学》2009,26(10):1154-1158
用制备的聚(丙烯酸-co-丙烯酰胺)/蒙脱土/腐殖酸钠复合吸附剂,研究了溶液pH值、吸附时间和Pb2+溶液初始浓度等因素对重金属Pb2+的吸附性能,探讨了复合吸附剂对Pb2+的吸附机理。结果表明,在pH值为6.0、吸附时间2 h、Pb2+溶液初始浓度0.01 mol/L和吸附剂用量0.10 g的条件下,复合吸附剂对Pb2+的吸附量达到364.05 mg/g,平衡所需的时间为15 min。与蒙脱土相比,复合吸附剂具有更高的吸附容量和更快的吸附速率。  相似文献   

12.
镍基蒙脱土/聚苯胺纳米复合材料的制备与表征   总被引:3,自引:0,他引:3  
首先通过化学氧化法合成了导电聚苯胺,再将聚苯胺引入镍基蒙脱土层间,合成了镍基蒙脱土/聚苯胺纳米复合材料,并用FTIR、XRD、TEM对其结构进行了表征与分析。结果表明,聚苯胺已进入蒙脱土层间,并使蒙脱土片层间距增大。测定了复合前后材料的电导率并对其进行了合理的解释。  相似文献   

13.
有机蒙脱土/天然橡胶纳米复合材料的阻燃性能研究   总被引:4,自引:0,他引:4  
采用机械混炼插层法制备有机蒙脱土/天然橡胶(TMT/NR)纳米复合材料.使用X-射线衍射(XRD)和红外表征了有机蒙脱土的结构特性,并用锥形量热仪测试了纳米复合材料的燃烧性能.结果表明,有机蒙脱土/NR纳米复合材料的热释放速率(HRR)、生烟速率(SPR)等较纯天然橡胶、未改性蒙脱土/NR复合材料均所有降低,表现出较好的阻燃性能.通过对纳米复合材料的燃烧性能和燃烧残余物分析,探讨了该体系的阻燃机理.  相似文献   

14.
sPS/PA6/蒙脱土纳米复合材料的制备与性能   总被引:4,自引:3,他引:4  
讨论了间规聚苯乙烯 (sPS) 尼龙 6(PA6) 磺化间规聚苯乙烯 (SsPS H) 蒙脱土纳米复合材料的制备技术和新材料的结构与性能特征 .蒙脱土经层间改性处理后 (MTN) ,可分别将SsPS H和aPS(无规聚苯乙烯 )插入其纳米层间 ,制备出插层型纳米复合物MTN SsPS和MTN aPS .在sPS/PA6/SsPS H三组分共混体系中加入MTN SsPS或MTN aPS ,进行四组分熔融共混即可制备出sPS/PA6/SsPS H/蒙脱土纳米复合材料 .TEM测定证实了蒙脱土在基体中的层厚分布约为 5 0nm .此外 ,采用DSC、DMA、XRD及力学性能测试仪等现代分析方法对sPS/PA6/SsPS H/蒙脱土纳米复合材料的结构与性能进行了详细研究 .研究结果表明这种纳米复合材料具有优良的综合性能  相似文献   

15.
王玉花  程超 《化学研究》2011,22(3):51-55
将有机化的蒙脱土与尼龙6(PA6)在Haake共混机中共混,制备出尼龙6/蒙脱土纳米复合材料(PA6N);对尼龙6/蒙脱土纳米复合材料和纯尼龙6分别进行差示扫描量热法非等温结晶试验,以了解蒙脱土在尼龙6/蒙脱土纳米复合材料中的成核作用、扩大尼龙6在包装领域的应用范围.与此同时,采用偏光显微镜测定了样品的结晶形态;采用紫...  相似文献   

16.
采用不同的有机改性剂制备了三种含羟基极性基团、环氧基和不含极性基团的有机化蒙脱土, 并与混有少量马来酸酐接枝聚丙烯的聚丙烯基体进行复合, 制备了聚丙烯粘土纳米复合材料. 采用X射线衍射仪、透射电子显微镜、热分析仪、示差扫描热分析仪和力学测试仪对样品进行结构表征和力学性能测试. 探讨和比较了不同有机化蒙脱土对聚丙烯/蒙脱土纳米复合材料结构和性能的影响. 结果表明, 携带极性基团的有机改性剂和马来酸酐接枝聚丙烯的强烈相互作用有利于有机化蒙脱土在复合材料中的插层、剥离和稳定性, 由此形成的聚丙烯粘土纳米复合材料具有更高的结晶度, 其力学性能的提高也更为显著.  相似文献   

17.
用有机插层剂处理蒙脱土原土 ,制得有机蒙脱土 (O MMT) .采用双单体 (马来酸酐和苯乙烯 )原位接枝插层法 ,制备了聚丙烯 蒙脱土纳米复合材料母料 .将母料与聚丙烯基体在双螺杆上共混挤出 ,制得聚丙烯 蒙脱土纳米复合材料 (PP Montmorillonetenanocomposites,PMNC) .这是制备聚合物纳米复合材料的一种新方法 .通过X 射线衍射测试 (XRD)表明 ,有机蒙脱土片层 0 0 1面间距从原土的 1 4 9nm扩大到 2 96nm ,复合材料中蒙脱土片层 0 0 1面间距由有机蒙脱土的 2 96nm扩大到 4 0nm .力学性能测试表明 ,复合材料的力学性能明显优于PP基体 ,在提高材料拉伸强度的同时 ,缺口冲击强度也得到很大的提高 .用扫描电镜 (SEM)对材料的冲击断面形貌进行了研究 ,并从理论上分析了断裂机理 .随着蒙脱土含量的增加 ,冲击断裂形式逐渐从脆性断裂变成韧性断裂  相似文献   

18.
聚合物/层状硅酸盐(PLS)纳米复合材料是近10余年来迅速发展起来的的交叉学科.由于其具有常规复合材料所没有的结构、形态以及较常规聚合物基复合材料更优异的性能等而引起人们的广泛关注[1].以往文献主要报道PLS纳米复合材料的制备与性能表征,如尼龙-6/蒙脱土[2]、PET/蒙脱土[3]和硅橡胶/蒙脱土[4]等.对于熔融加工过程中粘土片层及高分子的取向和结构研究很少.Kojima等[5]发现并研究了尼龙-6/蒙脱土纳米复合材料中的熔融剪切诱导取向结构,其X射线衍射与透射电镜(TEM)结果均表明,粘土片层沿熔体流动方向平行取向,但片层间距不等,因此为一平行取向但无序的结构.对于PLS纳米复合材料中的剪切诱导有序结构尚未见报道.  相似文献   

19.
采用湿化学还原法在自组装的单层阵列二氧化硅纳米粒子表面沉积银膜制备了SiO2核/Ag帽复合纳米结构。通过透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)和紫外-可见分光光度计(UV/Vis)研究和表征了该复合纳米结构的表面形貌、结构及光学性质。所制备的复合纳米粒子表面粗糙,其表面呈现无数纳米级谷粒状结构,SiO2内核粒径为350nm的银纳米帽的表面等离子共振吸收的2个共振峰分别位于382和689nm处。以亚甲基蓝作为探测分子研究了SiO2粒径为350和450nm的SiO2/Ag帽状复合纳米粒子的表面增强拉曼散射(SERS)活性,增强因子分别为3.6×109和3.9×109。结果表明,湿化学还原法制备的SiO2核/Ag帽复合纳米结构是很好的拉曼活性基底。  相似文献   

20.
原位聚合制备聚乙烯/蒙脱土(MMT)纳米复合材料的研究   总被引:12,自引:0,他引:12  
利用MgCl2在醇中溶解和蒙脱土(MMT)在醇中层间膨胀的特性,制备了MgCl2/TiCl4负载于MMT层间的MMT/MgCl2/TiCl4催化剂,并通过原位聚合合成了聚乙烯/蒙脱土纳米复合材料.经广角X射线衍射(WAXD)和透射电子显微镜(TEM)分析表明,蒙脱土片层在乙烯聚合过程中发生了层间剥离,以单片层或几片层共存的形式无规地分散于聚乙烯基质中.与分子量相近的纯聚乙烯相比,极低的蒙脱土含量(质量分数<1%)能使复合材料的屈服强度、拉伸强度和拉伸模量有很大提高.复合材料中蒙脱土片层以纳米尺寸在聚乙烯基质中的良好分布和对聚乙烯分子链运动的限制作用是力学性能提高的主要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号