首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
介绍了LiNi1/3Co1/3Mn1/3O2的晶体结构及电化学反应特性,并从LiNi1/3Co1/3Mn1/3O2的制备方法、离子掺杂及表面包覆等方面对其研究现状进行了综述。LiNi1/3Co1/3Mn1/3O2相对于LiCoO2而言具有较高的热稳定性、放电比容量及循环性能,是一种较理想的锂离子电池正极材料,但是其高温及大电流环境下的循环及倍率性能仍然有待改进。  相似文献   

2.
首次通过简单的固相反应合成了NaNi1/3Co1/3Mn1/3O2材料,并对其合适的电化学工作条件进行了探索。在此基础上对其在高充电电压下的衰减机理进行了研究。通过非原位XRD分析结构的变化,同时结合电化学阻抗谱等电化学手段综合分析材料在高压下的充放机理。  相似文献   

3.
本文以废旧锂电池为原料,经过解体分选、硫酸浸出、除杂净化等一系列工序,回收得到含镍钴锰的混合溶液,采用氢氧化物共沉淀法制备LiCo1/3Ni1/3Mn1/3O2正极材料。分别采用XRD,TG/DSC,SEM对其进行表征,并通过恒电流充放电测试和循环性能测试对材料的电化学性能进行分析。结果表明,合成得到的LiCo1/3Ni1/3Mn1/3O2正极材料具有典型的层状结构,并呈现球形或类球形的形貌。在0.1C,电压范围为2.75~4.3 V的条件下,经恒流充放电测试,它的首次放电容量为136.5 mAh.g-1,经过30个循环后,放电容量为124.9 mAh.g-1,容量保持率高达91.5%,表现出较优异的电化学性能。  相似文献   

4.
首次通过简单的固相反应合成了NaNi1/3Co1/3Mn1/3O2材料,并对其合适的电化学工作条件进行了探索。在此基础上对其在高充电电压下的衰减机理进行了研究。通过非原位XRD和电化学阻抗谱等电化学手段综合分析高充电电压下的衰减机理,发现随着充电电压升高至4 V,界面层的不断增厚与材料结构的不可逆变化同时导致了电化学性能的衰减。  相似文献   

5.
电解Co-Ni-Mn合金制备LiCo1/3Ni1/3Mn1/3正极材料   总被引:1,自引:0,他引:1  
叶茂  周震  卞锡奎  阎杰 《无机化学学报》2006,22(11):2005-2010
由Co-Ni-Mn合金出发,采用电解方法合成了含3种过渡金属元素的前驱物,再利用该前驱物制备了锂离子二次电池正极材料LiCo1/3Ni1/3Mn1/3。XRD测试结果表明通过该方法制备的正极材料具有较好的层状结构,SEM测试则显示材料由规则形状的1 μm左右颗粒组成。通过XPS实验证明Co、Ni、Mn 3种过渡金属元素在该材料中的价态分别为+3,+2,+4。采用循环伏安法对材料的电化学行为进行了研究,表明该材料具有较好的充放电可逆性。该材料在150 mA·g-1电流下经过50周的恒电流充放循环后容量仍能保持在160 mAh·g-1。  相似文献   

6.
以共沉淀法合成的(Ni1/3Co1/3Mn1/3)(OH)2为前驱体,在氧气氛中合成了层状正极材料LiNi1/3Co1/3Mn1/3O2,用F、Si离子复合掺杂的方法对其进行改性。X射线粉末衍射(XRD)分析表明,复合掺杂没有改变晶体的六方单相层状结构。扫描电镜(SEM)观察到产物呈类球形且颗粒均匀,平均粒径在0.1~0.2 μm。循环伏安(CV)性能显示,复合掺杂提高了该材料中Li+离子脱-嵌过程的可逆性。电化学阻抗谱(EIS)测试结果表明,复合掺杂降低了该材料的电化学极化,抑制其在循环过程中电化学反应阻抗的增加。复合掺杂后的层状材料首次放电容量为172.8 mAh·g-1 (0.2C),20次循环后仍有166.4 mAh·g-1。  相似文献   

7.
利用二次干燥法和共沉淀法分别制备出了非球形的Ni1/3Co1/3Mn1/3OOH前驱体和球形Ni1/3Co1/3Mn1/3(OH)2前驱体, 并分别和LiNO3混合烧结合成高密度非球形和球形的锂离子正极材料Li(Ni1/3Co1/3Mn1/3)O2. XPS分析表明, 二次干燥法制备的非球形Ni1/3Co1/3Mn1/3OOH前驱体其过渡金属Ni, Co和Mn的价态分别是+2, +3和+4, 而共沉淀法制备的球形Ni1/3Co1/3Mn1/3(OH)2前驱体其各金属价态为+2; X射线衍射分析表明, 非球形的Ni1/3Co1/3Mn1/3OOH前驱体比球形的前驱体具有较高的活性, 能够在低温下合成出Li(Ni1/3Co1/3Mn1/3)O2, 而且制备的产物结晶度高, 具有规整的层状α-NaFeO2结构, 扫描电镜显示制备的非球形产物颗粒均匀, 颗粒间隙小, 振实密度高达2.95 g•cm-3, 远高于球形的振实密度2.35 g•cm-3; 充放电实验表明, 由非球形前驱体制备的Li(Ni1/3Co1/3Mn1/3)O2其充放电性能和循环性能以及体积比容量均高于球形正极材料.  相似文献   

8.
在碳酸盐共沉淀法中引入超声波技术,合成锂镍钴锰前驱体,然后通过高温煅烧制备了LiNi1/3Co1/3Mn1/3O2正极材料,采用扫描电镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)、差示量热扫描(DSC)、循环伏安法(CV)及充放电测试等手段对材料进行了表征。结果表明,材料在700~1 000 ℃下均能形成六方层状α-NaFeO2结构,其晶体有序化程度随着煅烧温度的升高而升高。SEM分析  相似文献   

9.
以Ni1/3Co1/3Mn1/3(OH)2(2)和Li2CO3为原料,在空气气氛中,经过高温热处理工艺制备了高结晶度的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2(1)。正交试验确定最佳工艺条件为:2 0.3 mol,n(Li):n(2)=1.2,于950℃反应13 h。电化学性能研究结果表明,在2.7 V~4.6 V,电流密度16 mA.g-1时,1的首次放电比容量为203.4 mAh.g-1;经16 mA.g-1循环2次,32 mA.g-1循环9次,80 mA.g-1循环20次后放电比容量为164.1 mAh.g-1。  相似文献   

10.
采用高温固相合成法制备了Li[Ni(1-x)/3Mn(1-x)/3Co(1-x)/3Mox]O2 (x=0, 0.005, 0.01, 0.02). 对它们进行了XRD, SEM, 循环伏安及充放电容量测试, 结果发现, 掺杂x=0.01 Mo的样品具有较高的嵌锂容量和良好的循环稳定性, 在20 mA/g放电电流密度和2.3~4.6 V的电压范围内具有211.6 mAh/g的首次放电比容量, 循环50周后放电比容量仍能达到185.9 mAh/g, 容量损失为12.1%.  相似文献   

11.
Layered LiNi1/3Co1/3Mn1/3O2 has the isostructure of α-NaFeO2 and shows high rate capacity with stable cycleability. Furthermore, the thermal behavior of this material is milder than that of lithium nickel oxide and lithium cobalt oxide. In addition, it is expected to be stable at elevated temperatures. Therefore LiNi1/3Co1/3Mn1/3O2 may be the most promising cathode materials of lithium-ion secondary battery.In this research, LiNi1/3Co1/3Mn1/3O2 was prepared by solid-state reaction, sol-gel method and mixed hydroxide method. The influences of synthesis method on the physical and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), charge/discharge cycling cyclic voltammetry and differential scanning calorimetry (DSC). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the LiNi1/3Co1/3Mn1/3O2 compound are 2+, 3+ and 4+. From the voltage profile and cyclic voltammetry, the redox processes occurring at ~3.8V and ~4.5V are assigned to the Ni2+/Ni3+ and Co3+/Co4+ couples, respectively. Different preparation methods result in the difference in morphology (shape, particle size and specific surface area) and electrochemical behaviors. A sample prepared by solid-state reaction has the worst electrochemical performance among these three methods. Sample synthesized by mixed hydroxide method displays the better rate capacity than that prepared by sol-gel method, while the capacity retention of sample prepared by sol-gel method is superior to that synthesized by mixed hydroxide method.  相似文献   

12.
利用琥珀酸为鳌合剂的湿化学法成功合成了一系列锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2,在合成过程中改变琥珀酸与金属离子摩尔比(R)并研究了这一参数对合成LiNi1/3Mn1/3Co1/3O2材料物理及电化学性质的影响.采用热重、X射线衍射、Rietveld精修、扫描电镜以及超导量子干涉仪对反应机理、材料的结构、形貌以及磁学性质进行了详细表征.得到最佳合成条件为R=1,此时LiNi1/3Mn1/3Co1/3O2的阳离子混排度最低.此外,通过Rietveld精修得到该材料阳离子混排度的结果与通过磁学方法得到的结果定量相符,如对于在R=1条件下合成的样品,Rietveld精修结果显示其阳离子混排度为1.85%,而超导量子干涉仪的测试结果为1.80%.当充放电区间为3.0-4.3V,电流密度为0.2C(1C=160mA·g-1)时,该样品的首次放电容量为161mAh·g-1,库仑效率为93.1%,经过50次循环后,容量保持率可达91.3%.  相似文献   

13.
放电温度对LiNi3/8Co2/8Mn3/8O2电化学性能的影响   总被引:5,自引:0,他引:5  
采用X射线衍射(XRD)、X射线光电子能谱(XPS)、恒流充放电、循环伏安及交流阻抗法,研究了放电温度对LiNi3/8Co2/8Mn3/8O2的倍率特性、锂离子扩散及电荷传递的影响.结果表明, 提高放电温度可显著改善LiNi3/8Co2/8Mn3/8O2的放电容量与倍率放电性能.尽管温度升高使电荷传递活性与锂离子扩散速度都增加,但电荷传递活化能比锂离子扩散活化能大一倍多,表明电荷传递步骤是其电化学反应控制步骤.温度对其电荷传递的影响大于对锂离子扩散的影响.温度升高,电荷传递速率加快,电化学嵌入-迁出反应加速,是其放电容量与倍率放电特性显著改善的主要原因.  相似文献   

14.
共沸蒸馏法制备高性能LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料   总被引:1,自引:0,他引:1  
三元复合氧化物镍钴锰酸锂(LiNi1/3Co1/3Mn1/3O2)因兼有LiNiO2和LiCoO2的优点,被认为是最有可能取代LiCoO2的新型正极材料而受到广泛关注.本文采用一种改进的共沉淀方法合成了LiNi1/3Co1/3Mn1/3O2,以共沸蒸馏干燥前驱物.结果表明,共沸干燥法最终得到的产物比普通干燥法得到的产物具有更高的比容量、更好的循环性能以及更优的倍率性能.究其原因,可归结为共沸干燥得到的样品颗粒更小,且粒径分布更均匀,球形度高,比表面积大,促进了锂离子的扩散,因而提高了其电化学性能.  相似文献   

15.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   

16.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%.  相似文献   

17.
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.  相似文献   

18.
林和成a  b 杨勇  a 《化学学报》2009,67(2):104-108
通过共沉淀与固相反应法制备层状的LiNi0.45Mn0.45Co0.10O2, 并利用X射线衍射(XRD)和电子扫描显微镜(SEM)测定材料的结构和形貌. 在2.5~4.5 V范围内, 以0.1 C (28 mA•g-1)放电, LiNi0.45Mn0.45Co0.10O2正极材料的起始放电容量达到167.2 mAh•g-1, 但循环性能较差. 当采用AlF3包覆后, 材料的循环性能得到明显改善. 利用电化学阻抗谱(EIS)技术探索AlF3包覆对正极材料的电化学性能改善机理, 实验结果表明: AlF3包覆层能够阻止电解液对正极材料的溶解和侵蚀, 稳定其层状结构, 同时降低了电极界面阻抗. 因此AlF3包覆技术是一种改善LiNi0.45Mn0.45Co0.10O2材料电化学性能的有效方法和工具.  相似文献   

19.
通过控制结晶法和浓度梯度进料的方式制备了Ni、Co和Mn三元素组分含量呈全梯度分布的类球形Ni0.7Co0.15Mn0.15(OH)2前驱体,与LiOH·H2O均匀混合并焙烧后获得LiNi0.7Co0.15O2正极材料,系统研究了不同焙烧温度对材料Ni、Co和Mn三元素扩散情况、晶体结构及电化学性能的影响规律。通过能谱仪(EDXS)分析不同焙烧温度下材料颗粒中Ni、Co、Mn三元素的扩散程度。研究结果表明,在800℃下焙烧得到的正极材料梯度分布特征明显且电化学性能最佳,首次放电比容量为186.1 mAh·g-1(2.8~4.3 V,0.2C),2C大倍率充放电条件下循环200次后容量保持率为90.1%。这种材料兼具高比容量及良好的循环稳定性,可以用作下一代高能量密度锂离子电池正极材料。  相似文献   

20.
以β-Ni0.9Co0.05Mn0.025Mg0.025(OH)2和LiOH.H2O为原料通过高温固相法合成了球形LiNi0.9Co0.05Mn0.025Mg0.025O2。采用热重-差热分析了反应过程,采用X射线衍射和扫描电镜对粉末的结构和形貌进行了表征。采用充放电测试和循环伏安测试对材料电化学性能进行了研究。结果表明:750℃煅烧12 h合成的LiNi0.9Co0.05Mn0.025Mg0.025O2为Li原子混排较少的良好层状结构,二次颗粒尺寸在15μm左右,且具有最高的放电比容量和良好的循环性能,在0.2C,2.8~4.3 V的条件下,首次放电比容量达207 mAh.g-1,40次循环后容量保持率为92.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号