首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 270 毫秒
1.
介绍了LiNi1/3Co1/3Mn1/3O2的晶体结构及电化学反应特性,并从LiNi1/3Co1/3Mn1/3O2的制备方法、离子掺杂及表面包覆等方面对其研究现状进行了综述。LiNi1/3Co1/3Mn1/3O2相对于LiCoO2而言具有较高的热稳定性、放电比容量及循环性能,是一种较理想的锂离子电池正极材料,但是其高温及大电流环境下的循环及倍率性能仍然有待改进。  相似文献   

2.
通过高温烧结制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并用XRD、SEM和恒流充放电对材料的结构、形貌和低温电性能进行了表征,通过线性极化、GITT和EIS等手段研究分析了低温下LiNi1/3Co1/3Mn1/3O2性能变差的原因.结果表明,-20℃时,LiNi1/3Co1/3Mn1/3O2材料的0.1、0.2、1和5 C倍率放电比容量依次为25℃时同倍率下放电比容量的83.2%、68.4%、57.2%和34.1%,放电中值电压比25℃时依次降低了0.049、0.125、0.364和0.531 V.低温充放电过程表现出明显的极化现象,其中最显著的极化来自锂离子穿过活性物质/电解液界面过程以及电荷转移过程,而非锂离子在电极材料内部的扩散过程.  相似文献   

3.
由溶胶凝胶法合成的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2在水溶液体系中具有优异的高倍率充放电性能,放电时能够输出极高功率密度.XRD表征证明合成的LiNi1/3Co1/3Mn1/3O2材料具有层状α-NaFeO2结构,SEM形貌显示材料的粒径约为500nm,恒电流充放电测试表明LiNi1/3Co1/3Mn1/3O2材料在pH12的2mol·L-1LiNO3溶液中,以2C(0.36A/g)倍率充放时,比容量达到了147mAh/g.如以80C(14.4A/g)、150C(27A/g)和220C(39.6A/g)的倍率充放,材料的比容量仍可达到64mAh/g、33mAh/g和16mAh/g,而全电池的功率密度分别达到2574W/kg、3925W/kg、4967W/kg.其中80C倍率充放,经1000周循环后,容量保持率为90.9%.  相似文献   

4.
以共沉淀法合成的前驱体Ni1/3Co2/3-xAlx(OH)2与低共熔锂盐0.38LiOH·H2O-0.62LiNO3制备了锂离子电池正极材料LiNi1/3Co2/3-xAlxO2(x=1/12,1/6,1/3,1/2,7/12).采用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对其结构、形貌和电化学性质进行表征.结果表明,LiNi1/3Co2/3-xAlxO2在1/12≤x≤1/3范围内可以保持单一的六方层状α-NaFeO2结构,当Al掺杂量(x)高于1/3时,会出现杂相.其中,LiNi1/3Co1/3Al1/3O2结晶程度最高,阳离子混排效应最小,并且颗粒小而均匀,振实密度可以达到2.88g·cm-3,首次放电容量为151.5mAh·g-1,循环50次后放电容量保持在91.4%,在1C和2C倍率下放电容量仍可达到133.7和120.9mAh·g-1.  相似文献   

5.
通过LiNO3与Mn(NO3)2的混合溶液与LiNi1/3Co1/3Mn1/3O2粉体共混干燥后在900℃热处理12 h制备了xLi2MnO3.(1-x)LiNi1/3Co1/3Mn1/3O2(x=0.1、0.2、0.3和0.4)固溶体。随着x的增加,固溶体的XRD峰强度减弱,峰形变宽,而在20°~30°间的结构特征峰(LiMn6)更加明显;尽管固溶体的外观形貌为团聚状,但组成其的单颗粒平均粒径随着x增大,由x=0.1时的250 nm增大到x=0.4时的350 nm。随着充放电截止电压的升高,固溶体的放电比容量增大;在2.5~4.6 V间充放电,当x=0.2时,充放电的极化最小,放电平台最高;不同倍率充放电循环21周后发现随着x的增大,容量保持率从91.2%增加大105.6%。研究结果表明,Li2MnO3可以改善LiNi1/3Co1/3Mn1/3O2材料的电化学性能。  相似文献   

6.
自从2001年Ohzuku T和Makimura Y报导LiNi1/3Co1/3Mn1/3O2正极材料以来,其一直被认为是最有可能取代LiCoO2的新型锂离子二次电池正极材料之一。氢氧化物共沉淀法是最常用的一种合成LiNi1/3Co1/3Mn1/3O2材料的方法,通过混合氢氧化物共沉淀法可以获得有着均一分布且具有很高的振实密度的球形LiNi1/3Co1/3Mn1/3O2。  相似文献   

7.
利用琥珀酸为鳌合剂的湿化学法成功合成了一系列锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2,在合成过程中改变琥珀酸与金属离子摩尔比(R)并研究了这一参数对合成LiNi1/3Mn1/3Co1/3O2材料物理及电化学性质的影响.采用热重、X射线衍射、Rietveld精修、扫描电镜以及超导量子干涉仪对反应机理、材料的结构、形貌以及磁学性质进行了详细表征.得到最佳合成条件为R=1,此时LiNi1/3Mn1/3Co1/3O2的阳离子混排度最低.此外,通过Rietveld精修得到该材料阳离子混排度的结果与通过磁学方法得到的结果定量相符,如对于在R=1条件下合成的样品,Rietveld精修结果显示其阳离子混排度为1.85%,而超导量子干涉仪的测试结果为1.80%.当充放电区间为3.0-4.3V,电流密度为0.2C(1C=160mA·g-1)时,该样品的首次放电容量为161mAh·g-1,库仑效率为93.1%,经过50次循环后,容量保持率可达91.3%.  相似文献   

8.
采用喷雾干燥法合成了LiNi0.5-xAl2xMn1.5-xO4(0≤2x≤0.15)正极材料,研究Al掺杂对LiNi0.5Mn1.5O4材料结构与电化学性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、傅里叶红外光谱(FTIR)、循环伏安(CV)和充放电测试等手段对其结构及电化学性能进行表征.结果表明,Al取代Ni和Mn使材料的晶体结构发生了转变,空间群由P4332转变为Fd3m,同时增大了锂离子的扩散速率,提高了材料的倍率性能.在室温下,LiNi0.4 5Al0.1Mn1.45O4表现了最好的倍率性能,当放电电流为0.5 C时,放电容量为126 mA.h/g,当放电电流增加到5 C时,放电容量为109 mA.h/g,保持率达到了87%.此外,Al取代Ni和Mn有效降低了材料在高温下的Mn溶解量,从而有效改善了材料在高温大倍率下的循环性能.LiNi0.45Al0.1Mn1.45O4材料在50℃,倍率为3 C时,放电容量为121.7mA.h/g,循环50次后,仍可保留初始容量的94%.  相似文献   

9.
采用氢氧化物共沉淀-高温煅烧方法成功制备出具有较低阳离子混排的纳米片LiNi1/3Co1/3Mn1/3O2(LNCM)正极材料。这种纳米片有利于锂离子的扩散。所以纳米片LNCM正极材料表现出了比商业化LNCM材料更加优异的倍率性能:在3.0~4.6 V下,10 C首次放电容量可达85.5 mAh·g-1,能量密度可达310.2 Wh·kg-1。  相似文献   

10.
以Ni1/3Co1/3Mn1/3(OH)2(2)和Li2CO3为原料,在空气气氛中,经过高温热处理工艺制备了高结晶度的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2(1)。正交试验确定最佳工艺条件为:2 0.3 mol,n(Li):n(2)=1.2,于950℃反应13 h。电化学性能研究结果表明,在2.7 V~4.6 V,电流密度16 mA.g-1时,1的首次放电比容量为203.4 mAh.g-1;经16 mA.g-1循环2次,32 mA.g-1循环9次,80 mA.g-1循环20次后放电比容量为164.1 mAh.g-1。  相似文献   

11.
Layered LiNi1/3Co1/3Mn1/3O2 has the isostructure of α-NaFeO2 and shows high rate capacity with stable cycleability. Furthermore, the thermal behavior of this material is milder than that of lithium nickel oxide and lithium cobalt oxide. In addition, it is expected to be stable at elevated temperatures. Therefore LiNi1/3Co1/3Mn1/3O2 may be the most promising cathode materials of lithium-ion secondary battery.In this research, LiNi1/3Co1/3Mn1/3O2 was prepared by solid-state reaction, sol-gel method and mixed hydroxide method. The influences of synthesis method on the physical and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), charge/discharge cycling cyclic voltammetry and differential scanning calorimetry (DSC). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the LiNi1/3Co1/3Mn1/3O2 compound are 2+, 3+ and 4+. From the voltage profile and cyclic voltammetry, the redox processes occurring at ~3.8V and ~4.5V are assigned to the Ni2+/Ni3+ and Co3+/Co4+ couples, respectively. Different preparation methods result in the difference in morphology (shape, particle size and specific surface area) and electrochemical behaviors. A sample prepared by solid-state reaction has the worst electrochemical performance among these three methods. Sample synthesized by mixed hydroxide method displays the better rate capacity than that prepared by sol-gel method, while the capacity retention of sample prepared by sol-gel method is superior to that synthesized by mixed hydroxide method.  相似文献   

12.
共沸蒸馏法制备高性能LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料   总被引:1,自引:0,他引:1  
三元复合氧化物镍钴锰酸锂(LiNi1/3Co1/3Mn1/3O2)因兼有LiNiO2和LiCoO2的优点,被认为是最有可能取代LiCoO2的新型正极材料而受到广泛关注.本文采用一种改进的共沉淀方法合成了LiNi1/3Co1/3Mn1/3O2,以共沸蒸馏干燥前驱物.结果表明,共沸干燥法最终得到的产物比普通干燥法得到的产物具有更高的比容量、更好的循环性能以及更优的倍率性能.究其原因,可归结为共沸干燥得到的样品颗粒更小,且粒径分布更均匀,球形度高,比表面积大,促进了锂离子的扩散,因而提高了其电化学性能.  相似文献   

13.
Ti, F复合掺杂改进LiNi1/3Co1/3Mn1/3O2正极材料的电化学性能   总被引:5,自引:0,他引:5  
采用复合离子掺杂技术对LiNi1/3Co1/3Mn1/3O2进行改性, 并对材料的结构及电化学性能进行了考察.  相似文献   

14.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   

15.
TiO2包覆对LiCO1/3Ni1/3Mn1/3O2材料的表面改性   总被引:1,自引:0,他引:1  
为了提高材料LiCo1/3Ni1/3MnO2的循环件能,采用浸渍-水解法对其进行TiO2包覆.用X射线衍射(XRD)、电化学交流阻抗谱(EIS)、电感耦合等离子体发射光谱(ICP-OES)和恒流允放电测试研究包覆材料的结构和电化学性能.TiO2仅在材料表面形成包覆层,并未改变材料的结构.TiO2包覆能提高材料LiCo1/3Ni1/3Mn1/3O2的倍率性能和循环性能,TiO2包覆后的材料在5.0C(1.0C=160 mA·g-1)下的放电容量达到0.2C下的66.0%,而包覆前的材料在5.0C下的放电容量仅为其0.2C下的31.5%.包覆后的材料在2.0C下循环12周后的容最没有衰减,而未包覆的材料容量保持率仅为94.4%.EIS测试表明包覆材料性能的提高是由于循环过程中材料的界面稳定性得到了提高.循环后材料的XRD和ICP-OES测试表明,包覆层能提高材料LiCo1/3Ni1/3Mn1/3O2的结构稳定性.  相似文献   

16.
用一种简单的共沉淀法制备出了层状LiNi1/2Mn1/2O2材料,并且用XRD、SEM、循环充放电、循环伏安(CV)和电化学阻抗谱(EIS)等方法对材料进行了表征测试。首先,用共沉淀法制备氢氧化镍和氢氧化锰的混合物;然后,对共沉淀溶液进行预氧化来制备前驱体;最后,用预氧化的前驱体合成了LiNi1/2Mn1/2O2材料。SEM和XRD测试结果分别表明:LiNi1/2Mn1/2O2材料是粒径范围在100~200 nm之间的球形粒子,并且具有非常好的层状结构。循环充放电表明:在空气中900 ℃下合成时间为9 h的材料,在充放电截止电压为2.8~4.6 V的情况下,经过40次循环,材料的容量可以稳定地保持在140 mAh·g-1左右。循环伏安曲线表明:在锂的初始脱嵌和入嵌过程中存在不可逆相变。电化学阻抗谱测试表明LiNi1/2Mn1/2O2具有很好的锂离子扩散能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号