首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
S-doped ZnO nanostructures such as nanonails and nanowires have been synthesized via a simple one-step catalyst-free thermal evaporation process on a large scale. The doping concentration of sulfur into ZnO nanonails and nanowire were 2 atm % and 7.5 atm %, respectively. Studies found that the S-doped ZnO nanonails and nanowires were single-crystalline wurtzite structure and grew along the (001) direction. The average diameters of the nanonails and nanowires were 70 and 50 nm, respectively. Low-temperature photoluminescence spectra of ZnO samples showed two luminescence peaks in the UV and green emission region, respectively. As the concentration of sulfur in the ZnO nanostructures increased, the intensity of the UV emission peak decreased dramatically, and it showed a little blue-shift while the intensity of the green emission increased greatly.  相似文献   

2.
Large-area ordered Ni nanowire arrays with different diameters have been fabricated by the direct current electrodeposition into the holes of porous anodic alumina membrane. The crystal structure and micrograph of nanowire arrays are characterized by X-ray diffraction, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The results indicate that the growth orientation of Ni nanowires turns from [110] to [111] direction with increasing diameters of nanowires. The mechanism of the growth was discussed in terms of interface energy minimum principle. The size-dependent orientation of Ni nanowire arrays has the important significance for the design and control of nanostructures.  相似文献   

3.
In-doped ZnO (IZO) nanowires have been synthesized by a thermal evaporation method. The morphology and microstructure of the IZO nanowires have been extensively investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The products in general contain several kinds of nanowires. In this work, a remarkable type of IZO zigzag nanowire with a periodical twinning structure has been investigated by transmission electron microscopy (TEM). HRTEM observation reveals that this type of IZO nanowire has an uncommonly observed zinc blend crystal structure. These nanowires, with a diameter about 100 nm, grow along the [111] direction with a well-defined twinning relationship and a well-coherent lattice across the boundary. In addition, an IZO nanodendrite structure was also observed in our work. A growth model based on the vapor-liquid-solid mechanism is proposed for interpreting the growth of zigzag nanowires in our work. Due to the heavy doping of In, the emission peak in photoluminescence spectra has red-shifted as well as broadened seriously.  相似文献   

4.
采用脉冲电沉积结合阳极氧化铝模板技术制备了不同生长方向的闪锌矿型InSb纳米线阵列. 结果表明, 控制电解液中十二烷基硫酸钠(SDS)的浓度, 可使纳米线的择优生长方向从[400]向[220]方向转变. 利用X射线衍射仪、 场发射扫描电子显微镜、 高分辨透射电子显微镜对所制备纳米线的相组成和微结构进行了表征. 激光拉曼光谱结果表明, 不同生长方向的InSb纳米线阵列的拉曼光谱有明显差异. 与体材料相比, InSb纳米线阵列的红外吸收声子散射峰发生强烈红移, 其吸收带边发生了明显蓝移.  相似文献   

5.
The influence of effective deposition potential on the orientation and diameter of Bi(1-x)Sbx alloy nanowire arrays by pulsed electrodeposition technique was reported. X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy analysis show that the orientation of the Bi(1-x)Sbx nanowires can be turned from the [110] to the [202] direction by increasing the effective deposition potential, and the nanowires fully fill in the pores of the AAM in the lower potential region, while in the higher potential region the nanowires partly fill the pores of the AAM. The origin of those phenomena and the growth mechanism of the nanowire are discussed together with composition analysis.  相似文献   

6.
大面积Bi单晶纳米线阵列的制备   总被引:1,自引:1,他引:0  
在有序的氧化铝模板(AAO)的孔洞中, 采用电化学沉积工艺成功地制备了准金属Bi纳米线有序阵列. 使用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)及高分辨电子显微镜(HRTEM)对样品的结构和形貌进行了表征. XRD结果表明, 所制备的铋样品为六方相, 且沿[110]方向有很好的生长取向; FE-SEM图片清晰地说明铋纳米线阵列是大面积、填充率高和高度有序的; TEM的结果显示纳米线直径均匀、表面光滑且长径比大; HRTEM图片中清晰的晶格条纹和选区电子衍射(SAED)结果表明纳米线是单晶.  相似文献   

7.
ZnO nanowires doped with a high concentration Ga, In, and Sn were synthesized via thermal evaporation. The doping content defined as X/(Zn + X) atomic ratio, where X is the doped element, is about 15% for all nanowires. The nanowires consist of single-crystalline wurtzite ZnO crystal, and the average diameter is 80 nm. The growth direction of vertically aligned Ga-doped nanowires is [001], while that of randomly tilted In- and Sn-doped nanowires is [010]. A correlation between the growth direction and the vertical alignment has been suggested. The broaden X-ray diffraction peaks indicate the lattice distortion caused by the doping, and the broadening is most significant in the case of Sn doping. The absorption and photoluminescence of Sn-doped ZnO nanowires shift to the lower energy region than those of In- and Ga-doped nanowires, probably due to the larger charge density of Sn.  相似文献   

8.
ZnS/CdSe core‐shell and wire‐coil nanowire heterostructures have been synthesized by chemical vapor deposition assisted with pulsed laser ablation. Measurements from high‐resolution transmission electron microscopy and selected area electron diffraction have revealed that both ZnS/CdSe core‐shell and wire‐coil nanowires are of single‐crystalline hexagonal wurtzite structures and grow along the [0001] direction. While the lattice parameters of ZnS and CdSe in the core‐shell nanowires are nearly equal to those of bulk ZnS and CdSe, change of the lattice parameters in the CdSe‐coil is attributed to the doping of Zn into CdSe, resulting in the relaxation of compressive strain at the interface between CdSe‐coil and ZnS‐wire. Composition variation across the interfacial regions in the ZnS/CdSe nanowire heterostructures ranges only 10–15 nm despite the pronounced lattice mismatch between ZnS and CdSe by ?11%. Growth mechanisms of the ZnS/CdSe nanowire heterostructures are discussed.  相似文献   

9.
Highly ordered quaternary semiconductor Cu(2)ZnSnS(4) nanowires array have been prepared via a facile solvothermal approach using anodic aluminum oxide (AAO) as a hard template. The as-prepared nanowires are uniform and single crystalline. They grow along either the crystalline [110] or [111] direction. The structure, morphology, composition, and optical absorption properties of the as-prepared Cu(2)ZnSnS(4) samples were characterized using X-ray powder diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectrometry. A possible formation mechanism of the nanowire arrays is proposed. Governed by similar mechanism, we show that Cu(2)ZnSnSe(4) nanowire array with similar structural characteristics can also be obtained.  相似文献   

10.
Large-area highly oriented SiC nanowire arrays have been fabricated by chemical vapor reaction using an ordered nanoporous anodic aluminum oxide (AAO) template and a graphite reaction cell. Their microstructures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy. The results show that the nanowires are single-crystalline beta-SiC's with diameters of about 30-60 nm and lengths of about 8 microm, which are parallel to each other, uniformly distributed, highly oriented, and in agreement with the nanopore diameter of the applied AAO template. The nanowire axes lie along the [111] direction and possess a high density of planar defects. Some unique optical properties are found in the Raman spectroscopy and photoluminescence emission from oriented SiC nanowire arrays, which are different from previous observations of SiC materials. The growth mechanism of oriented SiC nanowire arrays is also analyzed and discussed.  相似文献   

11.
Synthesis and Characterization of ZnO Nanowires   总被引:1,自引:0,他引:1  
Zinc oxide is a wide bandgap (3.37 eV) semiconductor with a hexagonal wurtzite crystal structure. ZnO prepared in nanowire form may be used as a nanosized ultraviolet light-emitting source. In this study, ZnO nanowires were prepared by vapor-phase transport of Zn vapor onto gold-coated silicon substrates in a tube furnace heated to 900 ?C. Gold serves as a catalyst to capture Zn vapor during nanowire growth. Size control of ZnO nanowires has been achieved by varying the gold film thickness…  相似文献   

12.
采用C,Si和SiO2为反应原料,利用直流电弧法制备出长直的β-SiC纳米线。纳米线的直径为100~200 nm,长度为10~20 μm,并且沿着<111>方向生长。通过X射线衍射(XRD)、扫描电子显微术(SEM)、透射电子显微术(TEM)、拉曼光谱等手段,对β-SiC纳米线进行表征。探讨了β-SiC纳米线自催化气-液-固(VLS)生长机制。  相似文献   

13.
Lanthanum hexaboride nanowires produced by chemical vapor deposition are single-crystalline and grown along the [111] direction. Streaks appearing in the electron diffraction spots indicate the lateral direction perpendicular to the nanowire growth axis.  相似文献   

14.
Single-crystalline Ni nanowires have been successfully fabricated with anodic aluminum oxide as template by electrodeposition. Structural characterization (X-ray diffraction, XRD, and high-resolution transmission electron microscopy, HRTEM) shows that the single-crystalline Ni nanowire has a preferred orientation along the [220] direction. The effects of electrochemical deposition conditions on the structure of Ni nanowires are systematically studied to investigate the growth mechanism. Possible reasons for the growth of the single-crystalline Ni nanowires were discussed on the basis of electrochemistry and thermodynamics. These single-crystalline Ni nanowires have exhibited excellent magnetic properties (large anisotropy, large coercivity, and high remanence). By a similar process, single-crystalline Co nanowires with hexagonal close-packed (hcp) structure were achieved, also having large anisotropy, large coercivity (1.8 kOe), and high remanence ratio (80.8%).  相似文献   

15.
In this article, two simple methods, evaporation-condensation and catalytic thermal evaporation, were used to investigate the synthesis of CdS nanostructures for nanoscale optoelectronic applications. To understand their growth mechanisms, various electron microscopy and microanalysis techniques were utilized in characterizing their morphologies, internal structures, growth directions and elemental compositions. The electron microscopy study reveals that when using the evaporation-condensation method, branched CdS nanorods and self-assembled arrays of CdS nanorods were synthesized at 800 degrees C and 1000 degrees C, respectively. Instead of morphological differences, both types of CdS nanorods grew along the [0001] direction. However, when using the catalytic thermal evaporation method (Au as the catalyst), patterned CdS nanowires and nanobelts were formed at the temperature region of 500-600 degrees C and 600-750 degrees C, respectively. Their growth direction was along the direction [1010] instead of [0001]. Based on the microscopy and microanalysis results, we propose some growth mechanisms in relation to the growth processes of those exotic CdS nanostructures.  相似文献   

16.
A noncatalytic and template-free vapor transport process has been employed to prepare single-crystalline Sn nanowires with diameters of 10-20 nm. The growth of one-dimensional Sn nanowires follows the mechanism similar to the vapor-solid (V-S) mechanism. Two-dimensional square-shaped nanostructures were also found to form in the region of lower deposition temperatures. The rich morphology may be attributed to the competition in growth rate among different crystallographic planes. Structural characterization with high-resolution transmission electron microscopy showed that the nanowires and nanosquares grew in a preferential direction of [200]. The superconducting transition temperatures for Sn nanowires and Sn nanosquares were about 3.7 K, which was very close to that of bulk beta-Sn. Magnetization measurements showed that the critical magnetic fields for both Sn nanowires and Sn nanosquares increased significantly as compared to that of bulk Sn.  相似文献   

17.
运用化学气相沉积法(CVD), 直接以Sn和S为原料分区加热蒸发, 通过控制温度分布、气压、载气流量和金属铅纳米颗粒分布等宏观实验条件, 成功制备大面积Sn2S3一维纳米结构阵列. 扫描电子显微镜(SEM)图片显示: Sn2S3一维纳米结构的横向尺度在100 nm左右, 长约几个微米. X射线衍射(XRD)谱显示: 所制备样品的晶体结构属于正交晶系, 沿[002]方向生长. 紫外-可见漫反射谱表明Sn2S3一维纳米结构是带隙为2.0 eV的直接带隙半导体. 讨论了温度分布和金属铅纳米颗粒对Sn2S3一维纳米结构生长的影响, 并指出其生长可能遵循气-固(V-S)生长机理.  相似文献   

18.
Sn掺杂ZnO半导体纳米带的制备、结构和性能   总被引:7,自引:0,他引:7  
在无催化剂的条件下, 利用碳热还原反应气相沉积法制备出了高产率单晶Sn掺杂ZnO纳米带. XRD和TEM研究表明纳米带为结晶完好的纤锌矿结构, 生长方向沿[0001], EDS分析表明纳米带中Sn元素含量约为1.9%. 室温光致发光谱(PL)显示掺锡氧化锌纳米带存在强的绿光发射峰和较弱的紫外发射峰, 谱峰峰位中心分别位于494.8 nm和398.4 nm处, 并对发光机制进行了分析. 这种掺杂纳米带有望作为理想的结构单元应用于纳米尺度光电器件领域.  相似文献   

19.
Tower-like ZnO submicron- and nanostructures were synthesized by simply evaporating a mixture of Zn and Ga. Scanning electron microscopy and transmission electron microscopy observations showed that the regular hexagonal tower-like structure is likely to be made up in a layer-by-layer fashion and consist of sheets. According to our experiments, the amount of Ga has a large effect on their morphologies. The growth of such tower-like structures is ascribed to the vapor-solid mechanism. The introduction of Ga hinders the growth of ZnO along the [0001] direction, resulting in the formation of the novel tower-like structures. In addition, the photoluminescence of such structures shows a strong green-light emission.  相似文献   

20.
Starting from a mixture of Zn and BiI3, we grew nanowires and nanoplates on an oxidized Si substrate at relatively low temperatures of 250 and 300 degrees C, respectively. The ZnO nanowires had diameters of approximately 40 nm and grew along the [110] direction rather than the conventional [0001] direction. The nanoplates had thicknesses of approximately 40 nm and lateral dimensions of 3-4 microm. The growth of both the nanowires and nanoplates is dominated by the synergy of vapor-liquid-solid (VLS) and direction conducting. Analysis of photoluminescence spectra suggested that the nanoplates contain more oxygen vacancies and have higher surface-to-volume ratios than the nanowires. The present results clearly demonstrate that the shapes of ZnO nanostructures formed by using BiI3 can be controlled by varying the temperature in the range 250-300 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号