首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of the Lewis bases CO, octamethyltrisiloxane (OMTS) and 2,2’-bipyridine (bipy) with a sheet model for the principal activator (MeAlO)16(Me3Al)6 (16,6) in hydrolytic methylaluminoxane (MAO) were investigated by DFT. These studies reveal that OMTS and bipy form adducts with Me3Al prior to methide abstraction by 16,6 to form the ion-pairs [Me2Al(κ2-L)][ 16,6 ] ( 5 : L=OMTS, 6 : L=bipy, [ 16,6 ]=[(MeAlO)16(Me3Al)6 Me]) while CO simply binds to a reactive edge site without ionization. The binding and activation of Cp2ZrMe2 with 16,6 to form both neutral adducts 1 Cp2ZrMe216,6 and contact ion-pairs 4 and 7 , both with formula [Cp2ZrMe][μ-Me(MeAlO)16(Me3Al)6], featuring terminal and chelated MAO-anions, respectively was studied by DFT. The displacement of the anion with either excess Cp2ZrMe2 or Me3Al was also studied, forming outer-sphere ion-pairs [(Cp2ZrMe)2μ-Me][ 16,6 ] ( 2 ) and [Cp2Zr(μ-Me)2AlMe2][ 16,6 ] ( 3 ). The theoretical NMR spectra of these species were compared to experimental spectra of MAO and Cp2ZrMe2 and found to be in good agreement with the reported data and assignments. These studies confirm that 16,6 is a very suitable model for the activators present in MAO but highlight the difficulty in accurately calculating thermodynamic quantities for molecules in this size regime.  相似文献   

2.
Hydrolysis of trimethylaluminum (Me3Al) in polar solvents can be monitored by electrospray ionization mass spectrometry (ESI-MS) using the donor additive octamethyltrisiloxane [(Me3SiO)2SiMe2, OMTS]. Using hydrated salts, hydrolytic methylaluminoxane (h-MAO) features different anion distributions, depending on the conditions of synthesis, and different activator contents as measured by NMR spectroscopy. Non-hydrolytic MAO was prepared using trimethylboroxine. The properties of this material, which contains incorporated boron, differ significantly from h-MAO. In the case of MAO prepared by direct hydrolysis, oligomeric anions are observed to rapidly form, and then more slowly evolve into a mixture dominated by an anion with m/z 1375 with formula [(MeAlO)16(Me3Al)6Me]. Theoretical calculations predict that sheet structures with composition (MeAlO)n(Me3Al)m are favoured over other motifs for MAO in the size range suggested by the ESI-MS experiments. A possible precursor to the m/z 1375 anion is a local minimum based on the free energy released upon hydrolysis of Me3Al.  相似文献   

3.
Electrospray‐ionization mass spectrometric studies of poly(methylaluminoxane) (MAO) in the presence of [Cp2ZrMe2], [Cp2ZrMe(Cl)], and [Cp2ZrCl2] in fluorobenzene (PhF) solution are reported. The results demonstrate that alkylation and ionization are separate events that occur at competitive rates in a polar solvent. Furthermore, there are significant differences in ion‐pair speciation that result from the use of metallocene dichloride complexes in comparison to alkylated precursors at otherwise identical Al/Zr ratios. Finally, the counter anions that form are dependent on the choice of precursor and Al/Zr ratio; halogenated aluminoxane anions [(MeAlO)x(Me3Al)y?z(Me2AlCl)zMe]? (z=1, 2, 3…?) are observed using metal chloride complexes and under some conditions may predominate over their non‐halogenated precursors [(MeAlO)x(Me3Al)yMe]?. Specifically, this halogenation process appears selective for the anions that form in comparison to the neutral components of MAO. Only at very high Al/Zr ratios is the same “native” anion distribution observed when using [Cp2ZrCl2] when compared with [Cp2ZrMe2]. Together, the results suggest that the need for a large excess of MAO when using metallocene dichloride complexes is a reflection of competitive alkylation vs. ionization, the persistence of unreactive, homodinuclear ion pairs in the case of [Cp2ZrCl2], as well as a change in ion pairing resulting from modification of the anions formed at lower Al/Zr ratios. Models for neutral precursors and anions are examined computationally.  相似文献   

4.
Density functional theory calculations on neutral sheet models for methylaluminoxane (MAO) indicate that these structures, containing 5-coordinate and 4-coordinate Al, are likely precursors to ion-pairs seen during the hydrolysis of trimethylaluminum (Me3Al) in the presence of donors such as octamethyltrisiloxane (OMTS). Ionization by both methide ([Me]) and [Me2Al]+ abstraction, involving this donor, were studied by polarizable continuum model calculations in fluorobenzene (PhF) and o-difluorobenzene (DFB) media. These studies suggest that low MW, 5-coordinate sheets ionize by [Me2Al]+ abstraction, while [Me] abstraction from Me3Al-OMTS is the likely process for higher MW 4-coordinate sheets. Further, comparison of anion stabilities per mole of aluminoxane repeat unit (MeAlO)n, suggest that anions such as [(MeAlO)7(Me3Al)4Me]=[ 7,4 ] are especially stable compared to higher homologues, even though their neutral precursors are unstable.  相似文献   

5.
A mechanistic study has been carried out on the homogeneous olefin polymerization/oligomerization catalyst formed from Cp2ZrMe2 and methylaluminoxane, (MeAlO)x, in toluene. Formal transfer of CH3 from Zr to Al yields low concentrations of Cp2ZrMe+ solvated by [(Me2AlO)y(MeAlO)xy]y. The cationic Zr species initiates ethylene oligomerization by olefin coordination followed by insertion into the Zr–CH3 bond. Chain transfer occurs by one of two competing pathways. The predominant one involves exchange of Cp2Zr–P+ (P=growing ethylene oligomer) with Al–CH3 to produce another Cp2ZrMe+ initiator plus an Al-bound oligomer. Terminal Al–C bonds in the latter are ultimately cleaved on hydrolytic workup to produce materials with saturated end groups. Concomitant chain transfer occurs by sigma bond metathesis of Cp2Zr–P+ with ethylene. Metathesis results in cleavage of the Zr–C bond of the growing oligomer to produce materials also having saturated end groups; and a new initiating species, Cp2Zr-CHCH2+. The two chain transfer pathways afford structurally different oligomers distinguishable by carbon number and end group structure. Oligomers derived from the Cp2ZrMe+ channel are Cn (n=odd) alkanes; those derived from Cp2Zr–CHCH2+ are terminally mono-unsaturated Cn (n=even) alkenes. Chain transfer by beta hydride elimination is detectable but relatively insignificant under the conditions employed. Propylene and 1-hexene react similarly but beta hydride elimination is the predominant chain transfer step. The initial Zr-alkyl species produces a Cp2ZrH+ complex that is the principle chain initiator. Chain transfer is fast relative to propagation and the products are low molecular weight oligomers.  相似文献   

6.
Methylalumoxane (MAO), a perennially useful activator for olefin polymerization precatalysts, is famously intractable to structural elucidation, consisting as it does of a complex mixture of oligomers generated from hydrolysis of pyrophoric trimethylaluminum (TMA). Electrospray ionization mass spectrometry (ESI-MS) is capable of studying those oligomers that become charged during the activation process. We have exploited that ability to probe the synthesis of MAO in real time, starting less than a minute after the mixing of H2O and TMA and tracking the first half hour of reactivity. We find that the process does not involve an incremental build-up of oligomers; instead, oligomerization to species containing 12–15 aluminum atoms happens within a minute, with slower aggregation to higher molecular weight ions. The principal activated product of the benchtop synthesis is the same as that observed in industrial samples, namely [(MeAlO)16(Me3Al)6Me], and we have computationally located a new sheet structure for this ion 94 kJ mol−1 lower in Gibbs free energy than any previously calculated.

The activator methylaluminoxane is made by hydrolysis of trimethylaluminum. Analysis using ESI-MS reveals rapid formation of small oligomers is followed by slower aggregation to the larger precursors most capable of releasing [Me2Al]+.  相似文献   

7.
Hydrogenolysis of alkyl‐substituted cyclopentadienyl (CpR) ligated thorium tribenzyl complexes [(CpR)Th(p‐CH2‐C6H4‐Me)3] ( 1 – 6 ) afforded the first examples of molecular thorium trihydrido complexes [(CpR)Th(μ‐H)3]n (CpR=C5H2(tBu)3 or C5H2(SiMe3)3, n=5; C5Me4SiMe3, n=6; C5Me5, n=7; C5Me4H, n=8; 7 – 10 and 12 ) and [(Cp#)12Th13H40] (Cp#=C5H4SiMe3; 13 ). The nuclearity of the metal hydride clusters depends on the steric profile of the cyclopentadienyl ligands. The hydrogenolysis intermediate, tetra‐nuclear octahydrido thorium dibenzylidene complex [(Cpttt)Th(μ‐H)2]4(μ‐p‐CH‐C6H4‐Me)2 (Cpttt=C5H2(tBu)3) ( 11 ) was also isolated. All of the complexes were characterized by NMR spectroscopy and single‐crystal X‐ray analysis. Hydride positions in [(CpMe4)Th(μ‐H)3]8 (CpMe4=C5Me4H) were further precisely confirmed by single‐crystal neutron diffraction. DFT calculations strengthen the experimental assignment of the hydride positions in the complexes 7 to 12 .  相似文献   

8.
The reaction of Cp2ZrMe2 with the aluminum- and gallium-sulfido cubane compounds [( 1 Bu)M(3-S)]4 (M = Al, Ga), has been followed by NMR spectroscopy. Cleavage of the M4S4 core occurs resulting in abstraction of a monomeric ( 1 Bu)M(S) moiety and yielding Cp2Zr(-S)(-Me)Al( 1 Bu)Me (1) and [Cp2Zr(/gm-S)]2,[Ga( 1 Bu)Me2]2 (3), respectively. The remaining ( 1 Bu)3M3S3 fragment reacts further with Cp2ZrMe2 to give [(Cp2Zr)M3(3-S)3 ( 1 Bu)3Me2], M = Al (2), Ga (4). The molecular structure of [(Cp2Zr)Ga3,(3-S)3('Bu)3Me2] (4) has been confirmed by X-ray crystallography. All these compounds subsequently decompose to [Cp2Zr(-S)]2 and M( 1 Bu)Me2. The structure of compound 3 is discussed with respect to the decreased propensity of gallium, as compared to aluminum, to form 3-center 2-electron bridging bonds. Crystal data for [(Cp2Zr)Ga3(3-S)3( 1 Bu)3Me2] (4): monoclinic, P21/n,a = 10.585(2),b = 17.970(4),c = 16.418(3) A, = 101.00(3)°, R = 0.0402, R w = 0.0402.  相似文献   

9.
Reactions of Cyclostibanes, (RSb)n [R = (Me3Si)2CH, n = 3; Me3CCH2, n = 4, 5] with the Transition Metal Carbonyl Complexes [W(CO)5(thf)], [CpxMn(CO)2(thf)], [CpxCr(CO)3]2, and [Co2(CO)8]; Cpx = MeC5H4 (RSb)3 [R = (Me3Si)2CH] reacts with [W(CO)5(thf)], [CpxMn(CO)2(thf)], or [Co2(CO)8] to give [(RSb)3W(CO)5] ( 1 ), [RSb{Mn(CO)2Cpx}2] ( 2 ) or [RSbCo(CO)3]2 ( 3 ). The reaction of (R′Sb)n (n = 4, 5; R′ = Me3CCH2) with [CpxCr(CO)3]2 leads to [(R′Sb)4{Cr(CO)2Cpx}2] ( 4 ); Cpx = MeC5H4, thf = Tetrahydrofuran.  相似文献   

10.
A process of ion‐pair formation in the system Cp2ZrMe2/methylaluminoxane (MAO) has been studied by means of density functional theory quantum‐chemical calculations for MAOs with different structures and reactive sites. An interaction of Cp2ZrMe2 with a MAO of the composition (AlMeO)6 results in the formation of a stable molecular complex of the type Al5Me6O5Al(Me)O–Zr(Me)Cp2 with an equilibrium distance r(Zr–O) of 2.15 Å. The interaction of Cp2ZrMe2 with “true” MAO of the composition (Al8Me12O6) proceeds with a tri‐coordinated aluminum atom in the active site (OAlMe2) and yields the strongly polarized molecular complex or the μ‐Me‐bridged contact ion pair ( d ) [Cp2(Me)Zr(μMe)Al≡MAO] with the distances r(Zr–μMe) = 2.38 Å and r(Al–μMe) = 2.28 Å. The following interaction of the μ‐Me contact ion pair ( d ) with AlMe3 results in a formation of the trimethylaluminum (TMA)‐separated ion pair ( e ) [Cp2Zr(μMe)2AlMe2]+–[MeMAO] with r[Zr–(MeMAO)] equal to 4.58 Å. The calculated composition and structure of ion pairs ( d ) and ( e ) are consistent with the 13C NMR data for the species detected in the Cp2ZrMe2/MAO system. An interaction of the TMA‐separated ion pair ( e ) with ethylene results in the substitution of AlMe3 by C2H4 in a cationic part of the ion pair ( e ), and the following ethylene insertion into the Zr–Me bond. This reaction leads to formation of ion pair ( f ) of the composition [Cp2ZrCH2CH2CH3]+–[Me‐MAO] named as the propyl‐separated ion pair. Ion pair ( f ) exhibits distance r[Zr–(MeMAO)] = 3.88 Å and strong Cγ‐agostic interaction of the propyl group with the Zr atom. We suppose this propyl‐separated ion pair ( f ) to be an active center for olefin polymerization.  相似文献   

11.
The experimentally known split (3 + 2) five-electron donor bicyclo[3.2.1]octa-2,6-dien-4-yl (bcod) ligand provides a flexible alternative to the rigid planar cyclopentadienyl (Cp) ligand. In this connection, the structures and energetics of the binuclear iron carbonyl complexes (bcod)2Fe2(CO)n (n = 4, 3, 2, 1) have been investigated by density functional theory for comparison with the corresponding Cp2Fe2(CO)n derivatives. The cis and trans doubly CO-bridged (bcod)2Fe2(μ-CO)2(CO)2 structures are the lowest energy tetracarbonyl structures, similar to the Cp2Fe2(CO)4 system. However, an unbridged (bcod)2Fe2(CO)4 isomer lies only ~1 kcal/mol in energy above the doubly bridged isomers. The flexibility of the bcod ligand leads to low-energy singlet and triplet spin state structures with agostic hydrogen atoms for the unsaturated (bcod)2Fe2(CO)n (n = 3, 2, 1) systems. Analogous structures are not found in the corresponding Cp2Fe2(CO)n systems with the rigid Cp ligand. Such structures, effectively involving donation of an electron pair from an olefinic C-H bond to an iron atom through three-center two-electron C-H-Fe bonding, are energetically competitive with isomeric structures with metal-metal multiple bonds.  相似文献   

12.
Photolytic vulcanization of siloxane rubber films in the presence of trimethylsiloxy-substituted di- and trisilanes, oligodimethylsilanosiloxanes (Me2SiO) m (SiMe2) n , Me(Me2SiO) m (SiMe2) n Me, oligodimethylsilanes Me(Me2Si) n Me, and volatile pyrolysis products of polydimethylsilane was studied.  相似文献   

13.
Reactions of Cp2ZrCl2 with homometallic complexes of aluminium containing one residual hydroxy group Al(OGO)(OGOH) and Al(L)(OGOH) [where G=G1=CMe2CMe2 (1a); G=G2=CMe2CH2CHMe (1b); G= G3=CMe2CH2CH2CMe2 (1c) and L=L1=OC6H4CH=NCH2CH2O, G=G1 (2a); L=L1, G=G2 (2b); L=L1, G=G3 (2c); L=L2=OC10H6CH=NCH2CH2O, G=G1 (2d); L=L2, G=G2 (2e); L=L2, G=G3 (2f)] in THF using Et3N as HCl acceptor affords novel heterobimetallic compounds of the types Al(OGO)2Zr(Cl)Cp2 and Al(L)(OGO)Zr(Cl)Cp2, respectively. All of these derivatives have been characterised by elemental analyses, molecular weight measurements, and spectroscopic [IR, NMR (1H and 27Al)] studies.  相似文献   

14.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

15.
Highly reduced [Cp3Ln3(μ2-H)3]?/0 (Ln = La or Lu; Cp = C5H5?) clusters “free” from host carbon cages were used as models to mimic the electronic structure of La3@C110 and Lu3@C80 EMFs. DFT calculations revealed that these clusters “unshielded” from host carbon cages are highly reactive, disrupting strong single H–H, H–X (X = F, Cl, Br, and I) and double O=O bonds and descending the inert N≡N triple bond up to a single N–N bond, yielding stable bicapped trinuclear [Cp3Ln3(μ2-H)3(μ3-H)2]?, [Cp3Ln3(μ2-H)3(μ3-H)(μ3-X)]?, [Cp3Ln3(μ2-H)3(μ3-O)2]?, and [Cp3Ln3(μ2-H)3(μ3-N)2]? clusters. The calculated thermodynamics of the reactions revealed an unprecedented reactivity pattern inherent to multimetallic cooperative effect on nonclassic oxidative addition reactions which proceed by electrophilic attack of the oxidative addition (oxad) substrates at the center of the highly reduced triangular trilanthanide Ln3 rings accompanied by “penetration” of the ring plane that cuts the strong bonds. The [Cp3Ln3(μ2-H)3]?/0 (Ln = La or Lu) clusters, mimicking also the electronic structure of La3@C110 and Lu3@C80 EMFs, easily capture hydrogen, nitrogen, oxygen, and halogen atoms to yield monocapped trimetallic [Cp3Ln3(μ2-H)3(μ3-X)] (X = H, N, O, F, Cl, Br, and I) clusters. The molecular and electronic structures of the “free” from the cage monocapped trimetallic clusters are thoroughly discussed.  相似文献   

16.
The series of hexacarbalanes C6Aln–6Men (n = 7–11) represent a progression from localized organoaluminum structures to delocalized polyhedral structures en route to experimentally known 13‐ and 14‐vertex hexacarbalanes such as (AlMe)8(CCH2Ph)54 H), (AlMe)8(CCH2Ph)5(CCPh), [R4N+]2[(AlH)8(CR)6], and (AlNMe3)2(AlR)6(CR)6. In this connection, the lowest energy seven‐vertex C6AlMe7 structure has a tetrahapto benzene ring with the four Al C(cage) bonding interactions required to give the aluminum the favored octet configuration. Related eight‐vertex C6Al2Me8 structures are found with a benzene ring bound to an Al2 unit with a short AlAl distance of ∼2.55 Å suggesting a formal double bond. However, the lowest energy C6Al2Me8 structure has a dialuminacyclobutene unit fused to a tricyclohexane unit through an Al2 edge. Other relatively low‐energy C6AlMe7 and C6Al2Me8 structures consist of a six‐carbon hexatriene chain either forming a seven‐membered C6Al ring in the seven‐vertex structure or acting as a “flyover” between an Al2 unit. The lowest energy nine‐vertex hexacarbalane C6Al3Me9 has two separate C3 units bridged by both an Al2 pair and a single aluminum atom. Higher energy C6Al3Me9 hexacarbalanes contain a pentadienyl chain and an isolated carbon atom with an imbedded bonded Al3 triangle. The low‐energy 10‐vertex C6Al4Me10 structures have a central Al4 butterfly with nonbonding distances between the wingtips ranging from 3.35 to 3.91 Å. The lowest energy 11‐vertex C6Al5Me11 structure has a central Al4 quadrilateral with a diagonal bridged by the fifth aluminum atom. Higher energy C6Al5Me11 structures have an edge rather than a diagonal of the central Al4 quadrilateral bridged by the fifth aluminum atom.  相似文献   

17.
Methyl(vinyl)dichlorosilane reacts with DMSO in the presence of hexamethyldisiloxane to give the corresponding linear oligosiloxanes of the general formula Me3Si(OSiMeVin) n OSiMe3 (n=1–6) as well as MeSi(OSiMe3)3 and Me3Si(MeOSiVin) m OSi(OSiMe3)(Me)OSiMe3 (m=1–2). The same reaction in the presence of chlorotrimethylsilane results in oligomers of the general formula Me3Si(OSiMeVin) n Cl (n=1–3). A possible scheme of their formation is discussed. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 8, pp. 1614–1616, August, 1998.  相似文献   

18.
A new and selective one‐step synthesis was developed for the first activation stage of white phosphorus by organic radicals. The reactions of NaCpR with P4 in the presence of CuX or FeBr3 leads to the clean formation of organic substituted P4 butterfly compounds CpR2P4 (CpR: CpBIG=C5(4‐nBuC6H4)5 ( 1 a ), Cp′′′=C5H2tBu3 ( 1 b ), Cp*=C5Me5 ( 1 c ) und Cp4iPr=C5HiPr4 ( 1 d )). The reaction proceeds via the activation of P4 by CpR radicals mediated by transition metals. The newly formed organic derivatives of P4 have been comprehensively characterized by NMR spectroscopy and X‐ray crystallography.  相似文献   

19.
Alkyltrichlorosilanes react with DMSO (molar ratio 1 : 1 0 °C) to give cyclic oligoalkylchlorosiloxanes of the general formula [R(Cl)SiO] n (where R=Me or Et;n=3–6). With an excess of alkyltrichlorosilane (2: 1), linear oligoalkylchlorosiloxanes Cl[R(Cl)SiO] m SiCl2R (where R=Me or Et;m=1–5) are also formed. In the presence of hexamethyldisiloxane (molar ratio Cl3SiR : DMSO: (Me3Si)2O=1:1:2, 20 °C), the reaction products are both cyclic and linear oligoalkyl(trimethylsilyloxy)siloxanes [R(Me3SiO)SiO] n (n=3–5) and Me3Si[OSi(OSiMe3)R] m OSiMe3 (m=1–3), respectively. The reaction of DMSO with trichloro(vinyl)silane and hexamethyldisiloxane occurs in a similar manner. A plausible scheme of formation of the final products via intermediate alkylchlorosilanones RClSi=O and alkyl(trimethylsilyloxy)silanones is discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 361–364, February, 2000.  相似文献   

20.
Reaction of [CpnMCl4?x] (M=V: n=x=2; M=Nb: n=1, x=0) or [Cp*TaCl4] (Cp=η5‐C5H5, Cp*=η5‐C5Me5), with [LiBH4?thf] at ?70 °C followed by thermolysis at 85 °C in the presence of [BH3?thf] yielded the hydrogen‐rich metallaboranes [(CpM)2(B2H6)2] ( 1 : M=V; 2 : M = Nb) and [(Cp*Ta)2(B2H6)2] ( 3 ) in modest to high yields. Complexes 1 and 3 are the first structurally characterized compounds with a metal–metal bond bridged by two hexahydroborate (B2H6) groups forming a symmetrical complex. Addition of [BH3?thf] to 3 results in formation of a metallaborane [(Cp*Ta)2B4H8(μ‐BH4)] ( 4 ) containing a tetrahydroborate ligand, [BH4]?, bound exo to the bicapped tetrahedral cage [(Cp*Ta)2B4H8] by two Ta‐H‐B bridge bonds. The interesting structural feature of 4 is the coordination of the bridging tetrahydroborate group, which has two B? H bonds coordinated to the tantalum atoms. All these new metallaboranes have been characterized by mass, 1H, 11B, and 13C NMR spectroscopy and elemental analysis and the structural types were established unequivocally by crystallographic analysis of 1 – 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号