首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethene was polymerized with the catalytic systems L2ZrCl2/MAO/TMA (where L = Cp, Me5Cp, or Me4Cp; Cp = η5‐cyclopentadienyl; MAO = methylaluminoxane; and TMA = trimethylaluminum) at 60 °C, 2 bar, and AlTMA/Zr ratios of 0–2700. The polymerization activity was reduced with the addition of TMA for L = Cp but was almost unaffected for the methyl‐substituted catalysts. Increasing the TMA concentration resulted in a lower molecular weight of the polymer, with the largest effect for L = Me5Cp. A gel permeation chromatography analysis of the polymers revealed a high molecular weight shoulder and a nearly bimodal distribution for L = Me5Cp at high TMA concentrations. A possible explanation of such a shoulder in terms of long‐chain branching was ruled out by dynamic viscosity measurements. The origin of this effect more likely stemmed from competition between chain transfer to aluminum and β‐hydrogen transfer reactions at two different sites, one TMA‐sensitive and one TMA‐insensitive. Polymerizations at various pressures and temperatures substantiated this assumption. A clue to the underlying mechanism came from investigations of chain transfer to TMA studied with density functional calculations. Complexation of Me3Al to Zr was much stronger for L = Cp than for L = Me5Cp. However, the overall chain‐transfer barrier was much higher for L = Cp. These results agreed both with the reduced activity for L = Cp and with the strongly reduced molecular weight for L = Me5Cp observed with the addition of TMA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3566–3577, 2001  相似文献   

2.
Hydrolysis of trimethylaluminum (Me3Al) in polar solvents can be monitored by electrospray ionization mass spectrometry (ESI-MS) using the donor additive octamethyltrisiloxane [(Me3SiO)2SiMe2, OMTS]. Using hydrated salts, hydrolytic methylaluminoxane (h-MAO) features different anion distributions, depending on the conditions of synthesis, and different activator contents as measured by NMR spectroscopy. Non-hydrolytic MAO was prepared using trimethylboroxine. The properties of this material, which contains incorporated boron, differ significantly from h-MAO. In the case of MAO prepared by direct hydrolysis, oligomeric anions are observed to rapidly form, and then more slowly evolve into a mixture dominated by an anion with m/z 1375 with formula [(MeAlO)16(Me3Al)6Me]. Theoretical calculations predict that sheet structures with composition (MeAlO)n(Me3Al)m are favoured over other motifs for MAO in the size range suggested by the ESI-MS experiments. A possible precursor to the m/z 1375 anion is a local minimum based on the free energy released upon hydrolysis of Me3Al.  相似文献   

3.
The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me6tren)2MII2(C6H4O22−)]2+ (Me6tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me6tren)2MII2(C6H4O2˙)]3+. Single-crystal X-ray diffraction shows that the Me6tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p-benzosemiquinone–transition metal magnetic exchange coupling for the first time and find that the nickel(ii) complex exhibits a substantial J < −600 cm−1, resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal–semiquinone exchange constants of J = −144(1) and −252(2) cm−1, respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of Ueff = 22 and 46 cm−1, respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear NiII complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation.

A semiquinone radical bridging two trigonal bipyramidal metal centers facilitates strong magnetic exchange and single-molecule magnet behavior.  相似文献   

4.
Ligand-based mixed valent (MV) complexes of Al(iii) incorporating electron donating (ED) and electron withdrawing (EW) substituents on bis(imino)pyridine ligands (I2P) have been prepared. The MV states containing EW groups are both assigned as Class II/III, and those with ED functional groups are Class III and Class II/III in the (I2P)(I2P2−)Al and [(I2P2−)(I2P3−)Al]2− charge states, respectively. No abrupt changes in delocalization are observed with ED and EW groups and from this we infer that ligand and metal valence p-orbitals are well-matched in energy and the absence of LMCT and MLCT bands supports the delocalized electronic structures. The MV ligand charge states (I2P)(I2P2−)Al and [(I2P2−)(I2P3−)Al]2− show intervalence charge transfer (IVCT) transitions in the regions 6850–7740 and 7410–9780 cm−1, respectively. Alkali metal cations in solution had no effect on the IVCT bands of [(I2P2−)(I2P3−)Al]2− complexes containing –PhNMe2 or –PhF5 substituents. Minor localization of charge in [(I2P2−)(I2P3−)Al]2− was observed when –PhOMe substituents are included.

Organo-aluminum mixed-valent complexes combine properties of both organic and transition element mixed-valent compounds. This supports delocalized electronic structures that are structurally and electronically tunable.  相似文献   

5.
Complexes of the Lewis base-free cations (MeBDI)Mg+ and (tBuBDI)Mg+ with Ph–X ligands (X = F, Cl, Br, I) have been studied (MeBDI = HC[C(Me)N-DIPP]2 and tBuBDI = HC[C(tBu)N-DIPP]2; DIPP = 2,6-diisopropylphenyl). For the smaller β-diketiminate ligand (MeBDI) only complexes with PhF could be isolated. Heavier Ph–X ligands could not compete with bonding of Mg to the weakly coordinating anion B(C6F5)4. For the cations with the bulkier tBuBDI ligand, the full series of halobenzene complexes was structurally characterized. Crystal structures show that the Mg⋯X–Ph angle strongly decreases with the size of X: F 139.1°, Cl 101.4°, Br 97.7°, I 95.1°. This trend, which is supported by DFT calculations, can be explained with the σ-hole which increases from F to I. Charge calculation and Atoms-In-Molecules analyses show that Mg⋯F–Ph bonding originates from electrostatic attraction between Mg2+ and the very polar Cδ+–Fδ bond. For the heavier halobenzenes, polarization of the halogen atom becomes increasingly important (Cl < Br < I). Complexation with Mg leads in all cases to significant Ph–X bond activation and elongation. This unusual coordination of halogenated species to early main group metals is therefore relevant to C–X bond breaking.

Complexes of a highly Lewis acidic Mg cation and the full series of Ph–X (X = F, Cl, Br, I) have been structurally characterized. The Mg⋯X–Ph angle decreases with halogen size on account of the growing halogen σ-hole.  相似文献   

6.
Two-phenoxy walled calix[4]pyrroles 1 and 2 strapped with small rigid linkers containing pyridine and benzene, respectively, have been synthesized. 1H NMR spectroscopic analyses carried out in CDCl3 revealed that both of receptors 1 and 2 recognize only F and HCO3 among various test anions with high preference for HCO3 (as the tetraethylammonium, TEA+ salt) relative to F (as the TBA+ salt). The bound HCO3 anion was completely released out of the receptors upon the addition of F (as the tetrabutylammonium, TBA+ salt) as a result of significantly enhanced affinities and selectivities of the receptors for F once converted to the TEAHCO3 complexes. Consequently, relatively stable TEAF complexes of receptors 1 and 2 were formed via anion metathesis occurring within the receptor cavities. By contrast, the direct addition of TEAF to receptors 1 and 2 produces different complexation products initially, although eventually the same TEAF complexes are produced as via sequential TEAHCO3 and TBAF addition. These findings are rationalized in terms of the formation of different ion pair complexes involving interactions both inside and outside of the core receptor framework.

The inherent selectivity of anion receptors can be reversed by ion pairing occurring both inside and outside of the receptor cavity.  相似文献   

7.
Electrocatalytic synthesis of multicarbon (C2+) products from CO2 reduction suffers from poor selectivity and low energy efficiency. Herein, a facile oxidation–reduction cycling method is adopted to reconstruct the Cu electrode surface with the help of halide anions. The surface composed of entangled Cu nanowires with hierarchical pores is synthesized in the presence of I, exhibiting a C2 faradaic efficiency (FE) of 80% at −1.09 V vs. RHE. A partial current density of 21 mA cm−2 is achieved with a C2 half-cell power conversion efficiency (PCE) of 39% on this electrode. Such high selective C2 production is found to mainly originate from CO intermediate enrichment inside hierarchical pores rather than the surface lattice effect of the Cu electrode.

The Cu electrode surface is reconstructed by a halide anion assisted method for promoting CO2 reduction.  相似文献   

8.
Drug-induced liver injury (DILI) is an important cause of potentially fatal liver disease. Herein, we report the development of a molecular probe (LW-OTf) for the detection and imaging of two biomarkers involved in DILI. Initially, primary reactive oxygen species (ROS) superoxide (O2˙) selectively activates a near-infrared fluorescence (NIRF) output by generating fluorophore LW-OH. The C Created by potrace 1.16, written by Peter Selinger 2001-2019 C linker of this hemicyanine fluorophore is subsequently oxidized by reactive nitrogen species (RNS) peroxynitrite (ONOO), resulting in cleavage to release xanthene derivative LW-XTD, detected using two-photon excitation fluorescence (TPEF). An alternative fluorescence pathway can occur through cleavage of LW-OTf by ONOO to non-fluorescent LW-XTD-OTf, which can react further with the second analyte O2˙ to produce the same LW-XTD fluorescent species. By combining NIRF and TPEF, LW-OTf is capable of differential and simultaneous detection of ROS and RNS in DILI using two optically orthogonal channels. Probe LW-OTf could be used to detect O2˙ or O2˙ and ONOO in lysosomes stimulated by 2-methoxyestradiol (2-ME) or 2-ME and SIN-1 respectively. In addition, we were able to monitor the chemoprotective effects of tert-butylhydroxyanisole (BHA) against acetaminophen (APAP) toxicity in living HL-7702 cells. More importantly, TPEF and NIRF imaging confirmed an increase in levels of both O2˙ and ONOO in mouse livers during APAP-induced DILI (confirmed by hematoxylin and eosin (H&E) staining).

Drug-induced liver injury (DILI) is an important cause of potentially fatal liver disease.  相似文献   

9.
We describe the synthesis of Fe(ii)-based octahedral coordination cages supported by calixarene capping ligands. The most porous of these molecular cages has an argon accessible BET surface area of 898 m2 g−1 (1497 m2 g−1 Langmuir). The modular synthesis of molecular cages allows for straightforward substitution of both the bridging carboxylic acid ligands and the calixarene caps to tune material properties. In this context, the adsorption enthalpies of C2/C3 hydrocarbons ranged from −24 to −46 kJ mol−1 at low coverage, where facile structural modifications substantially influence hydrocarbon uptakes. These materials exhibit remarkable stability toward oxidation or decomposition in the presence of air and moisture, but application of a suitable chemical oxidant generates oxidized cages over a controlled range of redox states. This provides an additional handle for tuning the porosity and stability of the Fe cages.

We describe the synthesis of Fe(ii)-based coordination cages whose stability and gas adsorption properties can be tuned through structural modifications and redox reactivity.  相似文献   

10.
Bimolecular nucleophilic substitution (SN2) reactions at carbon center are well known to proceed with the stereospecific Walden-inversion mechanism. Reaction dynamics simulations on a newly developed high-level ab initio analytical potential energy surface for the F + NH2Cl nitrogen-centered SN2 and proton-transfer reactions reveal a hydrogen-bond-formation-induced multiple-inversion mechanism undermining the stereospecificity of the N-centered SN2 channel. Unlike the analogous F + CH3Cl SN2 reaction, F + NH2Cl → Cl + NH2F is indirect, producing a significant amount of NH2F with retention, as well as inverted NH2Cl during the timescale within the unperturbed NH2Cl molecule gets inverted with only low probability, showing the important role of facilitated inversions via an FH…NHCl-like transition state. Proton transfer leading to HF + NHCl is more direct and becomes the dominant product channel at higher collision energies.

Multiple-inversion, the analogue of the double-inversion pathway recently revealed for SN2@C, is the key mechanism in SN2 at N center undermining stereospecificity.  相似文献   

11.
The reaction between basic [(PCP)Pd(H)] (PCP = 2,6-(CH2P(t-C4H9)2)2C6H4) and acidic [LWH(CO)3] (L = Cp (1a), Tp (1b); Cp = η5-cyclopentadienyl, Tp = κ3-hydridotris(pyrazolyl)borate) leads to the formation of bimolecular complexes [LW(CO)2(μ-CO)⋯Pd(PCP)] (4a, 4b), which catalyze amine-borane (Me2NHBH3, tBuNH2BH3) dehydrogenation. The combination of variable-temperature (1H, 31P{1H}, 11B NMR and IR) spectroscopies and computational (ωB97XD/def2-TZVP) studies reveal the formation of an η1-borane complex [(PCP)Pd(Me2NHBH3)]+[LW(CO3)] (5) in the first step, where a BH bond strongly binds palladium and an amine group is hydrogen-bonded to tungsten. The subsequent intracomplex proton transfer is the rate-determining step, followed by an almost barrierless hydride transfer. Bimetallic species 4 are easily regenerated through hydrogen evolution in the reaction between two hydrides.

Bimetallic complexes [LW(CO)2(μ-CO)⋯Pd(PCP)] cooperatively activate amine-boranes for their dehydrogenation via N–H proton tunneling at RDS and H2 evolution from two neutral hydrides.  相似文献   

12.
Designing solid-state electrolytes for proton batteries at moderate temperatures is challenging as most solid-state proton conductors suffer from poor moldability and thermal stability. Crystal–glass transformation of coordination polymers (CPs) and metal–organic frameworks (MOFs) via melt-quenching offers diverse accessibility to unique properties as well as processing abilities. Here, we synthesized a glassy-state CP, [Zn3(H2PO4)6(H2O)3](1,2,3-benzotriazole), that exhibited a low melting temperature (114 °C) and a high anhydrous single-ion proton conductivity (8.0 × 10−3 S cm−1 at 120 °C). Converting crystalline CPs to their glassy-state counterparts via melt-quenching not only initiated an isotropic disordered domain that enhanced H+ dynamics, but also generated an immersive interface that was beneficial for solid electrolyte applications. Finally, we demonstrated the first example of a rechargeable all-solid-state H+ battery utilizing the new glassy-state CP, which exhibited a wide operating-temperature range of 25 to 110 °C.

Melt-quenched coordination polymer glass shows exclusive H+ conductivity (8.0 × 10−3 S cm−1 at 120 °C, anhydrous) and optimal mechanical properties (42.8 Pa s at 120 °C), enables the operation of an all-solid-state proton battery from RT to 110 °C.  相似文献   

13.
Methylaluminoxane (MAO) activators have sheet structures which form ion-pairs on reaction of neutral donors such as octamethyltrisiloxane (OMTS). The ion-pairs can be detected by electrospray ionization mass spectrometry (ESI-MS) in polar media. The growth of these reactive precursors during hydrolysis of Me3Al can be monitored using ESI-MS. Density functional theory, combined with numerical simulation of growth, indicates that this process involves rapid formation of low MW oligomers, followed by assembly of these species into low MW sheets. These can grow through further addition of low MW oligomers or by fusion into larger sheets. The mechanism of these growth processes leads to the prediction that even-numbered sheets should be favored, and this surprising result is confirmed by ESI-MS monitoring experiments of both activator growth and MAO aging.  相似文献   

14.
Systematic investigations were performed with various substituted groups at C8 purine and ribose. A series of isoG analogs, C8-phenyl substituted isoG were synthesized and applied for Cs+ coordination. The structural proximity between purine and ribose limited pentaplex formation for C8-phenyl substituted isoG derivatives. Based on this observation, deoxy isoG derivative with modification on ribose (tert-butyldimethylsilyl ether) was applied to assemble with the Cs+ cation. Critical solvent (CDCl3 and CD3CN) and anion (BPh4, BARF, and PF6) effects were revealed, leading to the controllable formation of various stable isoG pentaplexes, including singly charged decamer, doubly charged decamer, and 15-mer, etc. Finally, the X-ray crystal structure of [isoG20Cs3]3+(BARF)3 was successfully obtained, which is the first example of multiple-layer deoxy isoG binding with the Cs+ cation, providing solid evidence of this new isoG ionophore beyond two-layer sandwich self-assembly.

The first example of multiple-layer deoxy isoG self-assembly was characterized by X-ray crystal structure. Critical solvent and anion effects were revealed, leading to the controllable formation of various stable isoG assemblies.  相似文献   

15.
A self-supported and flexible current collector solely made of earth-abundant elements, NiCo layered double hydroxide (LDH) wrapped around Cu nanowires (Cu-Ws) grown on top of commercially available Cu mesh (Cu-m), outperforms the benchmark 40 wt% Pt/C in catalyzing the electrochemical hydrogen evolution reaction (HER). The Cu-m/Cu-W/NiCo-LDH cathode operates both in acidic and alkaline media exhibiting high turnover frequencies (TOF) at 30 mV (0.3 H2 s−1 in 1 M KOH and 0.32 H2 s−1 in 0.5 M H2SO4, respectively) and minimal overpotentials of 15 ± 6 mV in 1 M KOH and 27 ± 2 mV in 0.5 M H2SO4 at −10 mA cm−2. Cu-m/Cu-W/NiCo-LDH outperforms the activity of 40 wt% Pt/C that needs overpotentials of 22 and 18 mV in 1 M KOH and 0.5 M H2SO4, respectively. With a tremendous advantage over Pt/C in triggering proton reduction with fast kinetics, similar mass activity and pH-universality, the current collector demonstrates outstanding operational durability even at above −1 A cm−2. The high density of electronic states near the Fermi energy level of Cu-Ws is found to be a pivotal factor for efficient electron transfer to the NiCo-LDH catalyst. This class of self-supported electrodes is expected to trigger rapid progress in developing high performance energy conversion and storage devices.

A flexible self-supported electrode made of earth-abundant elements, NiCo layered double hydroxide wrapped around Cu nanowires grown on Cu mesh, outperforms the benchmark 40 wt% Pt/C in catalyzing electrochemical hydrogen evolution reaction.  相似文献   

16.
Cyanuric triazide reacts with several transition metal precursors, extruding one equivalent of N2 and reducing the putative diazidotriazeneylnitrene species by two electrons, which rearranges to N-(1′H-[1,5′-bitetrazol]-5-yl)methanediiminate (biTzI2−) dianionic ligand, which ligates the metal and dimerizes, and is isolated from pyridine as [M(biTzI)]2Py6 (M = Mn, Fe, Zn, Cu, Ni). Reagent scope, product analysis, and quantum chemical calculations were combined to elucidate the mechanism of formation as a two-electron reduction preceding ligand rearrangement.

Cyanuric triazide reacts with transition metal precursors, extruding N2 and reducing the ligand by two electrons, which breaks an aromatic ring and rearranges to a bitetrazolylmethanediiminate (biTzI2−) ligand, forming two new aromatic rings.  相似文献   

17.
An efficient protocol for the modular synthesis of sulfones and sulfonyl derivatives has been developed utilizing sodium tert-butyldimethylsilyloxymethanesulfinate (TBSOMS-Na) as a sulfoxylate (SO22−) equivalent. TBSOMS-Na, easily prepared from the commercial reagents Rongalite™ and TBSCl, serves as a potent nucleophile in S-alkylation and Cu-catalyzed S-arylation reactions with alkyl and aryl electrophiles. The sulfone products thus obtained can undergo the second bond formation at the sulfur center with various electrophiles without a separate unmasking step to afford sulfones and sulfonyl derivatives such as sulfonamides and sulfonyl fluorides.

An efficient protocol for the modular synthesis of sulfones and sulfonyl derivatives has been developed utilizing sodium tert-butyldimethylsilyloxymethanesulfinate (TBSOMS-Na) as a sulfoxylate (SO22−) equivalent.  相似文献   

18.
High proton conducting electrolytes with mechanical moldability are a key material for energy devices. We propose an approach for creating a coordination polymer (CP) glass from a protic ionic liquid for a solid-state anhydrous proton conductor. A protic ionic liquid (dema)(H2PO4), with components which also act as bridging ligands, was applied to construct a CP glass (dema)0.35[Zn(H2PO4)2.35(H3PO4)0.65]. The structural analysis revealed that large Zn–H2PO4/H3PO4 coordination networks formed in the CP glass. The network formation results in enhancement of the properties of proton conductivity and viscoelasticity. High anhydrous proton conductivity (σ = 13.3 mS cm−1 at 120 °C) and a high transport number of the proton (0.94) were achieved by the coordination networks. A fuel cell with this CP glass membrane exhibits a high open-circuit voltage and power density (0.15 W cm−2) under dry conditions at 120 °C due to the conducting properties and mechanical properties of the CP glass.

A proton-conducting coordination polymer glass derived from a protic ionic liquid works as a moldable solid electrolyte and the anhydrous fuel cell showed IV performance of 0.15 W cm−2 at 120 °C.  相似文献   

19.
Loading Ag and Co dual cocatalysts on Al-doped SrTiO3 (AgCo/Al-SrTiO3) led to a significantly improved CO-formation rate and extremely high selectivity toward CO evolution (99.8%) using H2O as an electron donor when irradiated with light at wavelengths above 300 nm. Furthermore, the CO-formation rate over AgCo/Al-SrTiO3 (52.7 μmol h−1) was a dozen times higher than that over Ag/Al-SrTiO3 (4.7 μmol h−1). The apparent quantum efficiency for CO evolution over AgCo/Al-SrTiO3 was about 0.03% when photoirradiated at a wavelength at 365 nm, with a CO-evolution selectivity of 98.6% (7.4 μmol h−1). The Ag and Co cocatalysts were found to function as reduction and oxidation sites for promoting the generation of CO and O2, respectively, on the Al-SrTiO3 surface.

Deposition Ag and Co dual cocatalysts onto Al-SrTiO3 significantly improves its activity for photoreduction of CO2 by H2O, with extremely high selectivity to CO evolution (99.8%), in which Ag and Co enable CO2 reduction and H2O oxidation, respectively.  相似文献   

20.
Here, we report multinuclear organometallic molecular wires having (2,5-diethynylthiophene)diyl-Ru(dppe)2 repeating units. Despite the molecular dimensions of 2–4 nm the multinuclear wires show high conductance (up to 10−2 to 10−3G0) at the single-molecule level with small attenuation factors (β) as revealed by STM-break junction measurements. The high performance can be attributed to the efficient energy alignment between the Fermi level of the metal electrodes and the HOMO levels of the multinuclear molecular wires as revealed by DFT–NEGF calculations. Electrochemical and DFT studies reveal that the strong Ru–Ru interaction through the bridging ligands raises the HOMO levels to access the Fermi level, leading to high conductance and small β values.

Multinuclear organometallic molecular wires having (diethynylthiophene)diyl-Ru(dppe)2 repeating units show high conductance with small attenuation factors. The strong Ru–Ru interaction is the key for the long-range carrier transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号