首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
杨书廷  尹艳红等 《电化学》2001,7(3):310-315
采用均匀络合共沉淀法,以不同的镍盐分析合成出了球形β-Ni(OH)2并对其充放电循环及循环伏安特性进行了研究,发现由不同盐合成的Ni(OH)2其电化学性能有较大差别,用NiSO4合成的Ni(OH)2放电比容量高,循环寿命较好,平台电位也高于用Ni(NO3)2合成的Ni(OH)2。根据X射线(XRD)分析和傅立叶变换红外(FTIR)图谱对存在差别的原因进行分别,为原料的选择提供了理论依据。  相似文献   

2.
为了改善Ni(OH)2的电化学性质,提高锌镍电池的充放电性能,用化学共沉淀法合成了混合铝镍氢氧化物Ni/Al(OH)x.用XRD和FTIR表征了Ni/Al(OH)x样品的晶体结构及IR光谱特征;测试了用Ni/Al(OH)x为正极活性物质的Zn/Ni实验电池的充放电性能.研究结果表明:所合成的Ni/Al(OH)x具有α-Ni(OH)2的晶体结构;Ni/Al(OH)x活性物质在充放电过程中主要为γ/α循环,以Ni/Al(OH)x作为正极活性物质的Zn/Ni试验电池具有优良的循环性能,其最高放电比容量为379mA·h/g.  相似文献   

3.
掺钇α-Ni(OH)2的研究   总被引:5,自引:0,他引:5  
采用均匀络合共沉淀法,首次合成出了掺杂钇基α-Ni(OH)2,并采用XRD,FTIR和SEM分析技术,对其结构及形貌进行了研究,电化学测试表明,所制得的掺杂钇基α-Ni(OH)2与掺铝的α-Ni(OH)2和球形β-Ni(OH)2相比,敲实密度1.6g/cm2,电化学比容量330mA.h/g以上,活性物质利用率大于95%,循环可逆性好等优点。  相似文献   

4.
采用微乳法制备纳米Ni(OH)2,用X射线衍射、扫描电子显微镜、透射电子显微镜、恒流充放电、循环伏安、交流阻抗等测试技术研究了纳米Ni(OH)2的微观结构、表面形貌和电化学性能. 结果表明,140 ℃水热和微乳/水热2种方式处理得到的纳米Ni(OH)2具有不同形貌特征. 水热和微乳/水热处理虽然不影响纳米Ni(OH)2的活化性能,但对纳米Ni(OH)2的放电比容量影响很大,采用140 ℃水热和微乳/水热处理比单纯的微乳法制备得到的纳米Ni(OH)2的放电比容量分别提高了24.6和74.8 mA·h/g. 处理后的纳米Ni(OH)2的循环伏安峰电流增大、电荷转移电阻由2.633 Ω分别降至2.464和1.679 Ω.  相似文献   

5.
采用溶剂热法制备了氢氧化镍/多壁碳纳米管[Ni(OH)2/MWCNTs]复合纳米材料;借助X射线衍射仪和透射电镜分析了产物的结构和形貌,利用循环伏安测试测定了复合材料的电容特性.结果表明:片状β-Ni(OH)2较好地附着在MWCNTs上;复合样品的循环伏安行为明显有别于空白样品Ni(OH)2,峰电流较高.这表明引入MWCNTs可改善Ni(OH)2的电化学性能.与此同时,当MWCNTs的质量分数为10%时,相应的Ni(OH)2/MWCNTs复合物的氧化还原峰电位差最小,循环可逆性最佳.  相似文献   

6.
宋继国  沈培康 《物理化学学报》2004,20(10):1216-1220
合成了对甲苯磺酸铜,用X光单晶衍射确定了其结构.实验结果表明,该盐容易脱除全部结晶水,在空气中不潮解.分别测定了对甲苯磺酸铜(Cu(p-OTs)2)在H2O、CH3OH和DMF中的电化学参数.实验结果表明Cu(p-OTs)2在不同溶剂中的反应机理各异. Cu(II)的电化学还原在H2O中是分两步进行,而在CH3OH和DMF中的电化学还原是一步两电子过程.对实验结果进行了分析讨论.  相似文献   

7.
为了合成具有优良电化学性能的Ni系列碱性电池氢氧化镍正极活性物质,本文以硫酸镍和硫酸铝以及硝酸镍和硝酸铝为原料,在搅拌及同时超声波作用的条件下,用共沉淀方法合成了Al含量为Ni含量30(mol)%~50(mol)%的高Al含量的NiAl层状双氢氧化物(HACNiAlLDHs)。用XRD技术表征了HACNiAlLDHs样品的晶体结构特征;采用粉末微电极循环伏安(CV)技术研究了典型HACNiAlLDHs样品的电化学性能。结果表明,合成的HACNiAlLDHs样品为αNi(OH)2;观察到HACNiAlLDHs电极在反向扫描过程中的“第2个还原电流峰”,该还原峰可能为γNiOOH—→αNi(OH)2的还原电流和γNiOOH—→αNi(OH)2还原“滞后”的电流的重叠电流峰;Al3 以及SO42-杂质离子对“第2个还原电流峰”的出现起到重要作用;SO42-在电化学反应过程中使γNiOOH的还原“滞后”,并使得αNi(OH)2在碱性介质中更加稳定;以硝酸盐为原料合成的LNHACNiAlLDHs样品具有优良的电化学性能,如可逆性、电极活性物质利用率、放电性能、循环性能和析氧过电位。  相似文献   

8.
于Ni(OH)2中添加具有电容特性和大电流充放电性能良好的NiO.研究发现掺杂5%NiO的Ni(OH)2在0.2C倍率下放电容量可达310.1mAh/g,而3C放电容量还可以保持79.5%.其循环伏安扫描氧化还原峰电位差仅为164mV,表明该材料的循环可逆性好.由此可见在Ni(OH)2掺杂适量的NiO,对于Ni(OH)2的大电流充放电性能确有改进作用.  相似文献   

9.
采用AAO模板及后处理方法合成了圆盘状a-Co(OH)2并研究了其电化学电容性能.在该合成方法中,先采用阳极氧化铝模板结合交流电沉积的方法获得钴纳米线,而后将其在碱液中通过溶解氧氧化生成终端产物.用红外光谱(FT-IR),X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)表征了产物的结构和形貌;用循环伏安、恒电流充放电测试方法对其电化学性能进行了测试.此外,对圆盘状Co(OH)2的形成机理进行了初步探讨.结果表明,用此方法合成的Co(OH)2具有圆盘状形貌,属a相态,且表现出较好的电容特性.  相似文献   

10.
在水热条件下合成了[Ni(en)2]6[(VO)12O6B18O39(OH)3].6H2O多钒硼酸盐,X射线衍射分析表明,该晶体属三方晶系,R-3空间群.测试了晶体的IR光谱和TG曲线,用循环伏安法详细研究了合成化合物的氧化还原性质及电子转移机理,结果表明该化合物具有两对氧化还原峰,其电子转移数分别为单电子和三电子.  相似文献   

11.
基于密度泛函理论(DFT)设计了一系列不同氧化程度的还原氧化石墨烯片(rGNOs)并研究了其表面的氧化缺陷与吸附的氢氧化镍(Ni(OH)2)之间的相互作用.结果发现,rGNOs表面的含氧基团与Ni(OH)2之间的吸附能与含氧基团的氧化程度相关.在吸附Ni(OH)2后,rGNOs的原子间距和电荷分布的变化也都受rGNOs表面的含氧缺陷的氧化程度影响.理论计算的结果与实验观察的结果一致并能给出合理的解释.我们用简单的恒电位电化学沉积法有效地在rGNOs表面制备了粒径只有5 nm的Ni(OH)2纳米粒子.在Ni(OH)2/rGNOs制备过程中,氧化石墨烯的电化学还原是关键步骤.Ni(OH)2上吸附的Ni(OH)2因具有更高的吸附能而使其与在镍膜表面直接吸附的Ni(OH)2(在5 mV·s-1下比电容为656 F·g-1)相比具有更高的比电容值(在5 mV·s-1下为1591 F·g-1).rGNOs在吸附Ni(OH)2后构型和电荷分布的变化导致Ni(OH)2具有更低的等效串联电阻和更佳的频率响应.Ni(OH)2/rGNOs优异的赝电容特性表明其有潜力成为新型赝电容器材料.  相似文献   

12.
Ni-Mn共掺杂高电压钴酸锂锂离子电池正极材料   总被引:1,自引:0,他引:1  
以金属硫酸盐为原料,Na OH和NH3·H2O为沉淀剂,用共沉淀法合成了Co0.9Ni0.05Mn0.05(OH)前驱体,再进行配锂并通过高温固相法合成了Ni-Mn共掺杂高电压钴酸锂锂离子电池正极材料Li(Co0.9Ni0.05Mn0.05)O2。用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安(C-V)、交流阻抗(EIS)和充放电测试研究样品的晶体结构、形貌和电化学性能。结果表明Ni-Mn共掺杂正极材料Li(Co0.9Ni0.05Mn0.05)O2有优秀的电化学性能:在3.0~4.4 V和3.0~4.5 V区间,0.5C倍率下首次放电比容量分别为162.5 m Ah·g-1和185 m Ah·g-1,循环100次后容量保持率分别为94.4%和93.7%。  相似文献   

13.
外掺Y2O3对镍氢电池正极高温性能的影响   总被引:8,自引:2,他引:8  
研究了外掺Y2O3对镍氢电池镍正极高温性能的影响. 通常镍正极在高温下放电比容量会骤然降低, 为了提高其高温性能, 进行了球型Ni(OH)2外掺不同比例Y2O3的实验, 对压制的镍电极在不同温度下的充放电情况进行了细致的研究. 研究发现外掺Y2O3的球型Ni(OH)2电极比普通球型Ni(OH)2电极的放电比容量在高温下要高出很多, 在0.2 C充放电情况下外掺1%是最佳比例, 它比普通球型Ni(OH)2电极的放电比容量要高出35%以上, 在1 C充放电情况下外掺0.2%是最佳比例, 它比普通球型Ni(OH)2电极的放电比容量要高出15%以上. 同时对外掺Y2O3提高镍正极放电比容量的原因也进行了初步探讨.  相似文献   

14.
采用AAO模板及后处理方法合成了圆盘状α-Co(OH)2并研究了其电化学电容性能. 在该合成方法中, 先采用阳极氧化铝模板结合交流电沉积的方法获得钴纳米线, 而后将其在碱液中通过溶解氧氧化生成终端产物. 用红外光谱(FT-IR), X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)表征了产物的结构和形貌; 用循环伏安、恒电流充放电测试方法对其电化学性能进行了测试. 此外, 对圆盘状Co(OH)2的形成机理进行了初步探讨. 结果表明, 用此方法合成的Co(OH)2具有圆盘状形貌, 属α相态, 且表现出较好的电容特性.  相似文献   

15.
利用软嵌式粉末电极技术研究了Y(OH)3包覆对球形Ni(OH)2电化学性能的影响. 循环伏安结果表明, 在球形Ni(OH)2的氧化过程中存在Ni(Ⅲ)和Ni(Ⅳ)的两步氧化反应, 产生的Ni(Ⅳ)不稳定, 能分解产生NiOOH和氧气, 所以可将Ni(Ⅲ)→Ni(Ⅳ)看作副反应. Y(OH)3包覆层对Ni(OH)2氧化过程后期的副反应, 特别是Ni(Ⅲ)→Ni(Ⅳ)具有较好的抑制作用. 由包覆后的Ni(OH)2制成的模拟电池表现出很好的高温性能, 在1C充放电条件下, 当Y的摩尔分数为1.61%时, 在60 ℃时所对应的容量保持率可达到25 ℃的92.7%; 当Y的摩尔分数仅为0.55 %时, 在60 ℃时所对应的质量比容量也可达到241.3 mA·h/g.  相似文献   

16.
采用缓冲溶液法制备复合掺杂Mn、Mg的正极材料Ni0.82Mn0.18-xMgx(OH)2(x=0.06、0.09、0.12)。采用XRD、XPS和SEM等测试表征材料的晶体结构、锰价态和形貌,采用循环伏安和恒流充放电测试研究Mn、Mg不同掺杂比例对氢氧化镍电化学性能的影响。结果表明,Mn、Mg掺杂样品均为β相,晶粒细化;Ni0.82Mn0.09Mg0.09(OH)2样品具有优异的电极反应可逆性和充放电性能,100 mA·g^-1电流密度下的放电比容量(290.6 mAh·g^-1)优于商用β-Ni(OH)2(281.1 mAh·g^-1);且500 mA·g^-1电流密度下循环30圈后,Ni0.82Mn0.09Mg0.09(OH)2的放电比容量未见衰减,其循环稳定性优于商用β-Ni(OH)2。  相似文献   

17.
将通过共沉淀法制备的M(OH)2(M=Mn,Ni)前驱体与Zn O和Li2CO3混合,合成了不同Zn2+掺杂量的Li1.13Ni0.3-xMn0.57ZnxO2材料.X射线衍射结果表明,Zn2+掺杂提升了材料的层状属性,降低了Li+/Ni2+混排程度.在2.0~4.8 V电压范围内,Zn2+掺杂材料表现出更高的可逆比容量,并具有良好的倍率性能和循环稳定性.示差扫描量热测试结果显示,Zn2+掺杂材料的热安全性能明显优于未掺杂材料.在所合成的材料中,Li1.13Ni0.29Mn0.57Zn0.01O2(Zn2+掺杂量x=0.01)具有最高的放电容量、最好的倍率性能和循环稳定性及极佳的热安全性能.  相似文献   

18.
β-NiOOH的制备及充放电性能   总被引:14,自引:0,他引:14  
夏熙  潘仁 《应用化学》2001,18(1):76-0
电池正负极材料有充放电态之分 ,如 Mn O2 、Zn处于充电态 ,Ni(OH) 2 、MH、Li Co O2 、L i Ni O2等处于放电态 ,将起始荷电态不同的电极组装成电池 ,必然存在充放电态不匹配的问题 ,给电池化成带来困难 [1,2 ] .如 Zn/Ni电池正极改用充电态Ni OOH为原材料 ,则负极就可用充电态 Zn为原材料 ,很显然 Zn作为负极材料优于 Zn O,这就引发了将 Ni(OH) 2 氧化为 Ni OOH的研究 .本文采用改进的化学氧化法由β- Ni(OH ) 2 制备β-Ni OOH粉体 [3,4 ] ,对纯样及其与 Mn O2 混合的掺杂样的充放循环性能和反应机理进行了研究 .所用试剂…  相似文献   

19.
利用“管道式合成”方法合成了5种成分相同、结构不同的Ni(OH)2样品.采用X射线衍射(XRD)、场发射扫描电镜表征材料的微观结构及参数.测试了材料的电化学性能,考察了I101/I001比值与Ni(OH)2材料电化学性能的关系.研究结果表明,随I101/I001比值的增大,样品的电化学性能呈下降的趋势.说明XRD峰强比...  相似文献   

20.
用 XRD和 Raman光谱等方法对几种典型球形 Ni( OH) 2 电极材料进行了表征 ,并分析了材料的表观形貌、掺杂元素和微观结构等对其充放电性能的影响 .结果表明 ,有较好填充性和充放电性能 Ni( OH) 2 电极材料所具有的特征为 ,颗粒的球形好且结晶完好 ,晶粒较小 ,较大的晶格参数 c,并在 51 0和 3596cm- 1 处可以生成 Raman光谱峰 ;而 XRD和 Raman光谱方法则是评价 Ni( OH) 2 电极材料性能的有效手段 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号