首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
A simple PET fluorescence sensor (BDA) for Zn2+ that utilizes 1,3,5,7-tetramethyl-boron dipyrromethene as a reporting group and di(2-picolyl)amine as a chelator for Zn2+ has been synthesized and characterized. BDA has an excitation (491 nm) and emission wavelength (509 nm) in the visible range. The fluorescence quantum yields of the zinc-free and zinc-bound states of BDA are 0.077 and 0.857, respectively. With a low pKa of 2.1 +/- 0.1, BDA has the advantage of less sensitivity to pH than fluorescein-based Zn2+ sensors, and the fluorescence emission of zinc-binding is pH-independent in the range of pH 3-10. Under physiological conditions, metal ions such as Na+, K+, Ca2+, Mg2+, Mn2+ and Fe2+ have little interference. The apparent dissociation constant (Kd) is 1.0 +/- 0.1 nM. Using fluorescence microscopy, the sensor is shown to be capable of imaging intracellular Zn2+ changes.  相似文献   

2.
A ratiometric fluorescence probe for selective visual sensing of Zn2+   总被引:1,自引:0,他引:1  
A simple ratiometric fluorescence probe based on vinylpyrrole end-capped bipyridine for the visual sensing of Zn2+ under aqueous physiological pH (6.8-7.4) is described. The fluorophores 3a-c showed strong emission around 537 nm in acetonitrile with a quantum yield of 0.4. In buffered (HEPES, pH 7.2) acetonitrile-water mixture (9:1 v/v), titration of transition metal salts to 3c showed strong quenching of the emission at 547 nm except in the case of Zn2+, which resulted in a red-shifted emission at 637 nm. Alkali and alkaline earth metal salts could not induce any considerable changes to the emission behavior of 3a-c. The binding of Zn2+ was highly selective in the presence of a variety of other metal ions. Though Cu2+ quenches the emission of 3c, in the presence of Zn2+, a red emission prevails, indicating the preference of 3c toward Zn2+. Job plot and Benesi-Hildebrand analysis revealed a 1:1 complexation between the probe and the metal ion. The selective visual sensing of Zn2+ with a red emission is ideally suited for the imaging of biological specimens.  相似文献   

3.
He G  Zhao Y  He C  Liu Y  Duan C 《Inorganic chemistry》2008,47(12):5169-5176
A new Cu2+ compound Cu- NB, (where H2 NB is bis(2-hydroxyl-naphthalene-carboxaldehyde) benzil dihydrazone) was synthesized as a highly selective fluorescence chemosensor for the detection of Hg2+ in aqueous media through a displacement "turn-on" signaling strategy. Whereas the coordination of Cu2+ resulted in a considerable quenching of the typical luminescence of the naphthol rings in Cu-NB, the addition of Hg2+ ion led to a dramatic increase in the emission intensity of Cu-NB at about 530 nm (excitation at 430 nm). The competitive fluorescent experiments showed that alkali, alkaline earth metal ions, the group 12 metals Zn2+, Cd2+, the first-row transition-metal ions such as Mn2+, Fe2+, Co2+, and Ni2+, as well as Pb2+ could not inhibit the Hg2+-binding fluorescent enhancement. It is postulated that the existence of Cu2+ in the luminescent probe Cu-NB could turn away the interferences of other metal cations from Hg2+ detection. The optical responses of the free ligand upon addition of Cu2+ ion, and of the Hg-H2NB compound upon the addition of Cu2+ were also investigated for comparisons.  相似文献   

4.
罗丹明类荧光探针的合成及对铜离子的检测   总被引:1,自引:0,他引:1  
合成了罗丹明类Cu2+荧光增强型分子探针3',6'-双(二乙氨基)-2-(N-乙叉基氨基)螺[异吲哚-1,9'-占吨]-3-酮(RA),并研究了它的光谱性能及对铜离子的识别作用.在乙腈/水(体积比1/1)的介质中,当加入Cu2+后探针RA显玫瑰红色,最大吸收波长为548 nm,最大发射波长为571 nm,且荧光强度显著增强,但是,其它常见离子如Na+, K+, Mg2+, Ca2+, Mn2+, Cd2+, Cr3+, Co2+, Ni2+, Ag+, Pb2+, Zn2+, Fe3+, Hg2+不引起或引起很小的紫外/可见或荧光光谱变化.RA的选择性荧光增强主要是由于Cu2+诱导分子中的酰胺闭环结构发生开环,导致分子结构的共轭程度增大.在6.5×10-8~2.9×10-6 mol?L-1范围内RA可以有效检测Cu2+,检测限为5.0×10-8 mol?L-1.RA对Cu2+的识别不可逆,而且探针RA对pH值不敏感,可以在比较宽的范围内(pH=4.1~10.5)高灵敏、高选择性检测Cu2+.  相似文献   

5.
The effect of various metals on uridine diphosphate (UDP)-glucuronyltransferase and beta-glucuronidase activities in rat liver microsomes was investigated. The presence of Mn2+, Cd2+, Zn2+, V5+, Ni2+, Co2+, Cu+ or Ca2+ (20 microM) in the enzyme reaction mixture did not cause a significant alteration of UDP-glucuronyltransferase activity in hepatic microsomes. Of these metals, Zn2+ and Cd2+ (20 microM) caused a remarkable increase in hepatic microsomal beta-glucuronidase activity. Appreciable effects of Zn2+ and Cd2+ on beta-glucuronidase activity were seen at 5.0 microM, and the effects were saturated at 50 microM. Ca2+ (5.0-50 microM) and/or the Ca2(+)-binding protein regucalcin (2.0 microM) did not have an appreciable effect on UDP-glucuronyltransferase and beta-glucuronidase activities in hepatic microsomes. Thus, Zn2+ and Cd2+ uniquely increased beta-glucuronidase activity. The Zn2(+)- and Cd2(+)-induced increase in beta-glucuronidase activity was completely reversed by the presence of an SH group-protecting reagent (dithiothreitol). The response of the microsomal enzyme to Zn2+ and Cd2+ (20 microM) was no longer seen after treatment with 0.2% Triton X-100 [polyoxyethylene(10)octylphenyl ether], indicating that the stimulation by these metals is dependent on membrane association. The present study suggests that, of various metals tested, Zn2+ and Cd2+ can uniquely increase hepatic microsomal beta-glucuronidase activity and that their effect is based on binding to membranous SH groups, beside the enzyme protein.  相似文献   

6.
设计合成了1-乙酰基-3-(2-羟基-4,6-二甲氧基苯基)-5-苯基-2-吡唑啉(4), 测试了其紫外光谱和荧光光谱, 研究了其对锌离子的选择性识别作用. 结果表明, 化合物4作为锌离子荧光探针, 受常见离子的干扰较小, 对于锌离子有着较高的选择性和较低的检出限.  相似文献   

7.
一种高灵敏度高选择性的荧光素基比色荧光锌传感器   总被引:1,自引:0,他引:1  
本文报道了一种基于荧光素的锌离子传感器FN1,其在甲醇溶液中显示了对锌离子极高的灵敏度和选择性。随着锌离子的滴加,紫外-可见光谱中最初在371 nm处的吸收峰消失,在437 nm处出现了一个新峰。当在混合金属离子的甲醇溶液中滴加了相对于二价金属离子的等物质的量浓度的锌离子或相对于一价金属离子0.5倍物质的量浓度的锌离子后,锌离子积分荧光强度增强了近37倍(Φ=0.48,λmax(em)=513 nm),估算的锌离子检测限为7 μg·L-1。基于紫外-可见光、荧光和质谱的结果,讨论了1∶1的FN1/Zn2+配合物的结合机理。  相似文献   

8.
A series of platinum(II) 4'-aryl-2,2':6',2' '-terpyridyl phenylacetylide complexes (5-8) with 4'-naphthyl, 4'-phenanthryl, 4'-anthryl, and 4'-pyrenyl substituents have been synthesized and characterized. The emission properties of these complexes and their corresponding platinum(II) 4'-aryl-2,2':6',2' '-terpyridyl chloride complexes (1-4) at room temperature and 77 K have been systematically investigated. Except for the 4'-pyrenyl-2,2':6',2' '-terpyridyl phenylacetylide complex that emits from an admixing state consisting of metal-to-ligand charge-transfer (3MLCT), intraligand charge-transfer (3ILCT), and 3pi,pi characters, emissions of 4'-naphthyl, 4'-phenanthryl, and 4'-anthryl-2,2':6',2' '-terpyridyl phenylacetylide complexes all originate from a 3MLCT-dominant state. The emission lifetime of the 4'-pyrenyl-2,2':6',2' '-terpyridyl phenylacetylide complex (8) is longer than 2 mus at room temperature, and more than 300 mus at 77 K, while the other three complexes possess an emission lifetime of 200-400 ns at room temperature and tens of microseconds at 77 K. Replacing the chloride ligand in the 4'-naphthyl, 4'-phenanthryl, and 4'-anthryl-2,2':6',2' '-terpyridyl chloride complexes by a phenylacetylide ligand significantly increases the emission efficiency by an order of magnitude, and the emission lifetimes become longer. In contrast, such an alternation has no pronounced effect on the emission efficiency and lifetime of the 4'-pyrenyl-2,2':6',2' '-terpyridyl complexes. In the transient difference absorption (TA) spectra of 5 and 6, a moderately intense absorption band from 470 to 830 nm and a bleaching band between 400 and 470 nm were observed. For 7, the TA spectrum features a narrow, weak bleaching band at approximately 380 nm and a strong, narrow band at approximately 420 nm, as well as a broad, structureless band from 470 to 750 nm. In addition, a fourth, positive band appears above 800 nm. Complex 8 exhibits a strong, narrow bleaching band at approximately 340 nm and a broad, positive band extending from 370 to 830 nm, with the band maximum appearing at approximately 520 nm. The lifetimes obtained from the kinetic transient absorption measurement coincide with those from the kinetic emission measurement, indicating that the transient absorption originates from the same excited state that emits or, alternatively, from a state that is in equilibrium with the emitting state. All complexes exhibit optical limiting for 4.1 ns laser pulses at 532 nm, with 8 giving rise to the strongest optical limiting, presumably because of the much longer triplet excited-state lifetime and the stronger transient absorption at 532 nm.  相似文献   

9.
A series of diimine-tetracyanoosmate anions [Os(diimine)(CN)4]2- [diimine=2,2'-bipyridine (bipy), 2,2'-bipyrimidine (bpym), 1,10-phenanthroline (phen), and 4,4'-tBu2-2,2'-bipyridine (tBu2bpy)] were prepared and isolated as their Na+ salts (water soluble) or PPN+ salts (soluble in organic solvents). Several examples were crystallographically characterized; the Na+ salts form a range of 1D, 2D, or 3D infinite coordination polymers via coordination of the cyanide groups to Na+ cations in either an end-on or a side-on manner. The [Os(diimine)(CN)4]2- anions are solvatochromic, showing three MLCT absorptions, which are considerably blue-shifted in water compared to organic solvents, in the same way as is well-known for the analogous [Ru(diimine)(CN)4]2- anions. Luminescence in the red region of the spectrum is very weak but (following the expected solvatochromic behavior) is higher energy and more intense in water. However, by exploiting the effect of metallochromism (ref 4), the emission from [Os(tBu2bpy)(CN)4]2- in MeCN can be very substantially boosted in energy, intensity, and lifetime in the presence of Lewis-acidic metal cations (Na+, Ba2+, Zn2+), which, in a relatively noncompetitive solvent, coordinate to the cyanide groups of [Os(tBu2bpy)(CN)4]2-. This has an effect similar in principle to hydrogen bonding of the cyanides to delta+ protons of water, but very much stronger, such that in the presence of Zn2+ ions in MeCN the 1MLCT and 3MLCT absorptions are blue-shifted by ca. 7000 cm(-1), and the luminescence moves from 970 nm (vanishingly weak) to 610 nm with a lifetime of 120 ns (dominant component). Thus, the binding of metal cations to the cyanides provides a mechanism to incorporate [Os(diimine)(CN)4]2- complexes into polynuclear assemblies and simultaneously increases their 3MLCT energy and lifetime to an extent that makes them comparable to much-stronger luminophores such as Ru(II)-polypyridines.  相似文献   

10.
We present a small molecule ratiometric Zn2+-sensing system based on two fluorophores excited by visible light, a Zn2+-insensitive reporter fluorophore, coumarin 343, and a Zn2+-sensitive fluorescein-based compound, ZPA-1. The two fluorophores are linked by an ester to give Coumazin-1, a membrane-permeable, essentially nonfluorescent compound. Upon exposure to esterases, Coumazin-1 is hydrolyzed to its constituent fluorophores. Measurement of the ratio of coumarin emission at 488 nm (lambdaexc = 445 nm) and comparison with ZPA-1 emission at 534 nm (lambdaexc = 505 nm) affords information about the amount of sensor present as well as the amount of Zn2+ present. A generally applicable synthetic route to amide-functionalized ZP1 sensors is also described. The Zn2+-sensing properties of one member of this class are similar to those of the parent ZP1 sensor, with slightly tighter binding and lower background signal.  相似文献   

11.
A novel, highly sensitive method for simultaneous separation and determination of Cu2+, Ni2+, Zn2+, Cd2+, Co2+, Mn2+ and Pb2+ in biochemical samples was developed and evaluated by ion chromatography. All of these metals were well separated on a bifunctional ion-exchange column by a concentration gradient of oxalic acid and sodium chloride eluents, coupled with spectrophotometric detection after post-column derivatization with 2-[(5-bromo-2-pyridyl)azo]-5-diethylaminophenol at 560 nm. The method detection limits (signal-to-noise 3:1) were at microg l(-1) levels. The calibration graphs were linear (r2>0.999) over two-orders of magnitude. This technique was optimized and validated by analyzing five standard biochemical references.  相似文献   

12.
An improved scheme of chelation ion chromatography (CIC) system and a mixed eluent for the simultaneous determination of transition metals are described. A method based on the improved CIC system and the mixed eluent (PDCA/Na2C2O4/LiOH/NaCl) for the analysis of seven metals (Pb2+, Cu2+, Ni2+, Zn2+, Co2+, Cd2+ and Mn2+) at microg l(-1) levels in a single isocratic elution is developed. The optimize conditions which are different from references for analyte concentration and chromatographic separation are studied in detail. D418 chelation resin is used to further reduce values of the reagent blank. The above seven metals are measured at 565 nm using 2-[(5-Bromo-2-Pyridyl)-Azo]-5-Diethyl-AminoPhenol(5-Br-PADAP) as the post-column derivatizing reagent. Detection limits range from 0.3 to 12 microg l(-1) when 4 ml of sample is pre-concentrated. The results of real sample analysis are satisfactory.  相似文献   

13.
Tanyanyiwa J  Hauser PC 《Electrophoresis》2002,23(21):3781-3786
The detection of alkali, alkaline earth and heavy metal ions with a high-voltage capacitively coupled contactless conductivity detector (HV-C(4)D) was investigated. Eight alkali, alkaline earth metal ions and ammonium could be separated in less than 4 min with detection limits in the order of 5 x 10(-8) M. The heavy metals Mn2+, Pb2+, Cd2+ Fe2+, Zn2+, Co2+, Cu2+ and Ni2+ could also be successfully resolved with a 10 mM 2-(N-morpholino)ethanesulfonic acid/DL-histidine (MES/His)-buffer. Zn2+, Co2+, Cu2+ and Ni2+ showed an indirect response. The detection limits for the heavy metals were determined to range from about 1 to 5 microM.  相似文献   

14.
通过羰基将两分子2-(4-氨基-2-羟苯基)苯并咪唑(4-AHBI)连接,合成了结构高度对称的新化合物N,N′-二-[3-羟基-4-(2-苯并咪唑)苯基]脲(C27H20N6O3,1),测试了不同溶剂条件下1的紫外吸收和荧光发射光谱,研究了1对Zn2+的选择性识别作用。结果表明,随着溶剂极性的增大,1的紫外吸收峰发生蓝移,激发态分子内质子转移(ESIPT)荧光发射峰明显增强。与4-AHBI相比,1在乙腈溶液中的紫外吸收强度增强约3.5倍,最大吸收峰红移8 nm,荧光发射增强8倍多。1在乙腈溶液中的Zn2+荧光响应行为表明1与Zn2+的结合将导致1在445 nm处的荧光强度不断降低,而在395 nm处出现的新峰的荧光强度不断增强,具有比率荧光探针的特点,而且检测范围较宽,可达1×10-6-1×10-2 mol.L-1。  相似文献   

15.
合成了一个新型香豆素/Betti碱主体化合物1,并对其进行了结构表征。在乙腈/水溶液中进行主体1和碱金属、碱土金属相关离子(Li+,Na+,K+,Rb+,Cs+,Be2+,Mg2+,Ca2+,Sr2+,Ba2+)的相互作用研究时,发现仅Rb+,Ba2+离子对主体1有敏感的紫外光谱及荧光光谱响应,而其它的碱金属、碱土金属离子无敏感性光响应。紫外光谱显示,Rb+,Ba2+离子使主体1产生明显的红移(ε=4.66×102L·(mol·cm)-1,Δ=91nm),肉眼可观察到明显的由浅黄向橙红色的颜色变化,并使主体1的荧光光谱发生一定程度的猝灭。  相似文献   

16.
Ratiometric imaging is a technique to reduce artifacts by minimizing the influence of extraneous factors on the fluorescence of a sensor and is particularly useful for cellular imaging studies. Here we characterized the iminocoumarin fluorophore as a new scaffold for sensors for ratiometric imaging. The iminocoumarin 4 showed a high quantum yield in aqueous media on excitation in the visible wavelength region, while its coumarin analogue showed little fluorescence. We therefore developed a novel fluorescence probe, ZnIC, for ratiometric imaging of Zn2+, using iminocoumarin as a fluorophore and (ethylamino)dipicolylamine as a Zn2+ chelator. ZnIC exhibited almost the same fluorescence properties as 4, and the emission spectrum of this probe was red-shifted on addition of Zn2+ under physiological conditions. ZnIC is selective for Zn2+ over other biologically important metal ions, such as Ca2+ and Mg2+, and has high affinity for Zn2+. To confirm the suitability of ZnIC for biological applications, we employed it for the ratiometric detection of changes in intracellular Zn2+ in cultured cells and in rat hippocampal slices. The results indicate that iminocoumarin is a useful fluorophore for fluorescence microscopic imaging and that ZnIC should be useful for studies on the biological functions of Zn2+.  相似文献   

17.
A new fluorescent probe for Zn2+, namely, 8-hydroxy-5-N,N-dimethylaminosulfonylquinolin-2-ylmethyl-pendant cyclen (L8), was designed and synthesized (cyclen=1,4,7,10-tetraazacyclododecane). By potentiometric pH, 1H NMR, and UV spectroscopic titrations, the deprotonation constants pKa1-pKa6 of L(8)4 HCl were determined to be <2, <2, <2 (for amino groups of the cyclen and quinoline moieties), 7.19+/-0.05 (for 8-OH of the quinoline moiety), 10.10+/-0.05, and 11.49+/-0.05, respectively, at 25 degrees C with I=0.1 (NaNO3). The results of 1H NMR, potentiometric pH, and UV titrations, as well as single-crystal X-ray diffraction analysis, showed that L8 and Zn2+ form a 1:1 complex [Zn(H-1L8)], in which the 8-OH group of the quinoline ring of L8 is deprotonated and coordinates to Zn2+, in aqueous solution at neutral pH. On addition of one equivalent of Zn2+ and Cd2+, the fluorescence emission of L8 (5 microM) at 512 nm in aqueous solution at pH 7.4 [10 mM HEPES with I=0.1 (NaNO3)] and 25 degrees C increased by factors of 17 and 43, respectively. We found that the cyclen moiety has the unique property of quenching the fluorescence emission of the quinolinol moiety when not complexed with metal cations, but enhancing emission when complexed with Zn2+ or Cd2+. In addition, the Zn2+-L8 complex [Zn(H-1L8)] is much more thermodynamically and kinetically stable (Kd{Zn(H-1L8)}=[Zn2+]free[L8]free/[Zn(H-1L8)]=8 fM at pH 7.4) than the Zn2+ complexes of our previous Zn2+ fluorophores ([Zn(H-1L2)] and [Zn(L3)]). Furthermore, formation of [Zn(H-1L8)] is much faster than those of [Zn(H-1L2)] and [Zn(L3)]. The staining of early-stage apoptotic cells with L8 is also described.  相似文献   

18.
设计合成了6个1-乙酰基-3-(2-羟基-4,6二甲氧基苯基)-5-芳基-2-吡唑啉化合物4a~4f.测试了它们的紫外光谱和荧光光谱,研究了其对铜离子的选择性识别作用.结果表明,化合物4f作为铜离子荧光探针,受常见离子干扰较小,对于铜离子有着较高的选择性和较低的检出限.  相似文献   

19.
Liang LJ  Zhao XJ  Huang CZ 《The Analyst》2012,137(4):953-958
Pyrophosphate ion (PPi) is crucial in varieties of biological processes and industrial applications, and thus it is very important how to recognize it with high selectivity. In this contribution, one terpyridine (tpy)-based fluorescent molecule, 4-(methylphenyl)-2,2':6',2'-terpyridine (mptpy), has been reported to display a highly selective recognition for PPi in the presence of Zn(II). After exposure toward the Zn(II) ion, the characteristic emission of mptpy at 376 nm red-shifted to 406 nm with a strong enhancement upon an excitation at 280 nm, and then blue-shifted to 388 nm with the further addition of PPi. Absorption and fluorescence measurements showed that other phosphates including phosphate (Pi) as well as nucleotide triphosphates could not induce the spectral changes similar to PPi, demonstrating the unique binding effect between mptpy-Zn(II) and PPi. This process could also discriminate PPi from other inorganic anions. Therefore, a tpy-based fluorescence method for the highly selective recognition of PPi could be developed.  相似文献   

20.
Intracellular ester hydrolysis by cytosolic esterases is a common strategy used to trap fluorescent sensors within the cell. We have prepared analogues of Zinpyr-1 (ZP1), an intensity-based fluorescent sensor for Zn2+, that are linked via an amido-ester or diester moiety to a calibrating fluorophore, coumarin 343. These compounds, designated Coumazin-1 and -2, are nonpolar and are quenched by intramolecular interactions between the two fluorophores. Esterase-catalyzed hydrolysis generates a Zn2+-sensitive ZP1-like fluorophore and a Zn2+-insensitive coumarin as a calibrating fluorophore. Upon excitation of the fluorophores, coumarin 343 emission relays information concerning sensor concentration whereas ZP1 emission indicates the relative concentration of Zn2+-bound sensor. This approach enables intracellular monitoring of total sensor concentration and provides a ratiometric system for sensing biological zinc ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号