首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介孔Ce-MCM-48的合成及其可见光催化性能研究   总被引:1,自引:0,他引:1  
分别利用十六烷基三甲基溴化铵(CTAB)、正硅酸乙酯(TEOS)为模板剂和硅源,合成了高度有序的MCM-48材料。通过浸渍法制备了Ce含量不同的MCM-48(Ce-MCM-48s)材料。采用TG-DTA、小角XRD、N2吸-脱附、FT-IR、TEM、XPS和UV-vis等对Ce-MCM-48s进行了表征。XRD、N2吸-脱附和TEM证明Ce-MCM-48s具有与MCM-48相似的三维螺旋立体结构;FT-IR和XPS表明MCM-48孔道及其表面已被Ce氧化物所覆盖。可见光催化降解罗丹明B的实验证明,10%Ce-MCM-48的催化降解效率好于纯CeO2,商用TiO2(P125),5%Ce-MCM-48和15%Ce-MCM-48的。  相似文献   

2.
Chromium and cerium incorporated into MCM-48 framework are hydrothermally synthesized via sol–gel process without any additives and characterized by X-ray diffraction, N2 adsorption/desorption, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Diffuse reflectance UV–vis spectroscopy, and Thermogravimetric analysis. Results indicate that the materials possess a long-range ordered structure, high specific surface area, and narrow pore size distribution. SEM images illustrate the edge-truncated octahedron morphology of Cr-MCM-48 while Ce-MCM-48 preserves the truncated octahedron of the MCM-48 parent material. TEM images show the pore network of Ia3d symmetry after loading metals. Spectroscopic data confirm the existence of metals in the framework and extra-framework. At low Cr content, Cr-MCM-48 contains only Cr(VI) species while rich Cr content loading results in both the Cr(VI) and Cr(III) species. The hydrothermal stability of MCM-48 is enhanced by carefully incorporating metals into the parent material.  相似文献   

3.
洪新  唐克 《燃料化学学报》2015,43(4):456-461
以十六烷基三甲基溴化铵为模板剂,正硅酸乙酯(TEOS)为硅源,硝酸铈为铈源,采用水热法合成了杂原子介孔分子筛Ce-MCM-41。XRD和FT-IR表征结果表明,当加入的Ce/Si物质的量比小于0.04时合成了规整有序的介孔结构,并将Ce原子引入到MCM-41骨架中。N2吸附-脱附测试获得MCM-41和Ce-MCM-41(Ce/Si物质的量比为0.04)的平均孔径分别为2.82和2.46 nm,孔容分别为0.762 1和 0.689 4 m3/g,BET比表面积分别为986.42和756.8 m2/g。NH3-TPD表征结果表明,Ce-MCM-41的酸性要明显强于MCM-41,但两种分子筛的酸性均较弱。利用合成的MCM-41和Ce-MCM-41吸附脱除甲硫醚浓度为58 μg(甲硫醚)/g的甲硫醚/氮气混合气中的甲硫醚。甲硫醚分子尺寸的模拟结果为0.464 8 nm,可以很容易地进入分子筛的介孔孔道中。由于Ce-MCM-41分子筛具有较多的酸量,其硫吸附容量7.52 mg(S)/g明显高于MCM-41的4.57 mg(S)/g。MCM-41和Ce-MCM-41都具有较好的再生性能,再生3次后硫吸附容量仍可恢复到初始容量的80%,分别为3.52和 5.86 mg(S)/g。  相似文献   

4.
Cerium incorporated MCM-48 molecular sieves have been hydrothermally synthesized by both a mixed template and a variable pH approach. The samples were characterized by various physicochemical methods, including X-ray diffraction, transmission electron microscopy, diffuse reflectance UV-vis spectroscopy, XRF spectroscopy, nitrogen adsorption. These results reveal that cerium is incorporated in MCM-48 in the form of well-dispersed tetra-coodinated cerium ion. Maintaining the proper concentration of cerium and adjusting the pH allows for a more ordered structure with a much higher specific surface area than that of MCM-48. Ce-MCM-48 was employed in the liquid phase oxidation of cyclohexane with aqueous H2O2. The results showed that Ce-MCM-48 is more active as a catalyst for the liquid phase oxidation of cyclohexane. The oxidation conversion catalyzed by Ce-MCM-48 is 8.3 %-14.2% higher than that catalyzed by MCM-48 and the selectivity for the main products increase by 63.4%-68.8%. Accordingly, Ce-MCM-48 has been shown to have important potential applications.  相似文献   

5.
SUMMARY. The cerium-containing MCM-41 (Ce-MCM-41) has been synthesized with size in the micrometer range by direct hydrothermal method. Transmission electron microscopy shows the regular hexagonal array of uniform channel characteristics of MCM-41. Five peaks were detected in the lov-angle XRD patterns,an interplanar spacing d100 = 40.6 A was obtained that can be indexed on a hexagonal unit cell with a0 = 46.9 A. Nitrogen adsorption isotherm at 77 K revealed a surface area of 920 m2/g, pore size of 26.2 A and wall thickness of 18.1 A. A cell contraction of 2.6 A upon calcination was observed. The spectroscopic studies indicate that the synthesized sample is with MCM-41 structure and Ce is in the framework position. A weak Lewis acidity was indicated by infrared spectra of pyridine adsorption. The synthesized Ce-MCM-41 exhibits fairly catalytic activity for the NO reduction by CO.  相似文献   

6.
纯硅MCM-48的合成研究   总被引:1,自引:0,他引:1  
翟尚儒  蒲敏  张晔  吴东  孙予罕 《无机化学学报》2002,18(11):1081-1085
以正硅酸乙酯为硅源,非离子型表面活性剂聚乙二醇辛基苯基醚和阳离子型表面活性剂十六烷基三甲基溴化铵为共模板水热法合成了纯硅MCM-48分子筛。利用范德华力和氢键,聚乙二醇辛基苯基醚不仅可降低合成MCM-48所需阳离子表面活性剂的用量,而且有利于制备有序性好和稳定性高的MCM-48;并与单一阳离子表面活性剂制备的MCM-48的稳定性进行比较。  相似文献   

7.
缓冲体系中高热和水热稳定性的MCM-48介孔分子筛的合成   总被引:3,自引:0,他引:3  
孔令东  刘苏  颜学武  贺鹤勇  李全芝 《化学学报》2005,63(13):1241-1244
利用混合阳离子-非离子表面活性剂为模板剂在缓冲体系中成功地合成出具有高热和水热稳定性的MCM-48介孔材料. 通过XRD, N2吸附-脱附, 29Si MAS NMR和 31P MAS NMR等手段对样品进行了表征. 结果表明, 合成的MCM-48材料具有高的比表面积和高度有序的孔道系统. 样品在空气中于900 ℃下焙烧15 h和在600 ℃ 100%水蒸气下处理8~10 h, 仍能保持良好的立方孔道结构, 显示很高的热稳定性和极好的水热稳定性.  相似文献   

8.
Lanthanum-doped MCM-48 molecular sieves with different La contents were synthesized hydrothermally and characterized by X-ray diffraction (XRD), nitrogen sorption, transmission electron microscopy (TEM), UV-visible spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. The results show that the majority of La cations have been incorporated into the framework of MCM-48 molecular sieves. When the molar ratio of La/Si is >0.039 in the sample, some of lanthanum species exist in the extraframework. Compared with pure silicate MCM-48, lanthanum-doped MCM-48 samples show the medium strong acidity that is due to the incorporation of La in the framework of silica. In the oxidation of styrene with H(2)O(2) as the oxidant over the lanthanum-doped MCM-48 catalysts, benzaldehyde is the main product with a small amount of styrene oxide. The La content in the catalysts, reaction temperature, reaction time, and solvent affect greatly the catalytic oxidation of styrene. The conversion of styrene and the selectivity to styrene oxide increase noticeably when a small amount of NaOH aqueous solution is added into the reaction mixture. Ln-doped MCM-48 catalysts with 14 kinds of rare earth elements were synthesized hydrothermally and evaluated for the oxidation of styrene. The results show that their catalytic performance is tremendously different and depends on the nature of rare earth elements doped in the MCM-48 mesoporous materials.  相似文献   

9.
MCM-48 was surface modified via vapor-phase reactions with hexamethyldisilazane (CH(3)-MCM-48) and 3-aminopropyldimethylethoxysilane (NH(2)-MCM-48). (29)Si NMR confirmed that the resulting materials contained covalently attached trimethylsilane and 3-aminopropyldimethylsilane moieties, both important functionalities for bioseparation applications. The surface coverage was approximately 1.8 and 0.9 groups per nm(2), respectively. The X-ray diffraction patterns and the narrow pore size distributions obtained from the gas sorption isotherms showed that the modified materials retained the characteristic pore structure of the underlying MCM-48 material. CH(3)-MCM-48 exhibited significantly improved hydrolytic stability over the unmodified MCM-48 under the aqueous conditions tested, whereas NH(2)-MCM-48 appeared to be less stable than the unmodified MCM-48. The decrease in stability is most likely due to the nature of the attachment of the 3-aminopropyldimethylsilane moiety, where the conversion of surface silanol groups is limited by H bonding with the amino end, leading to a 50% lower surface concentration and resulting in an increased likelihood of nucleophilic attack on the silica surface, enhancing the rate of hydrolysis. Hexamethyldisilazane thus appears to be a superior functional group for modifying the MCM-48 surface.  相似文献   

10.
以MCM-22为原料合成高水热稳定性的介孔材料   总被引:3,自引:0,他引:3  
以合成的微孔分子筛MCM-22为原料,将其与表面活性剂及氢氧化钠一起回流溶解,再调节溶液的pH值至7~9, 使MCM-22转化为高水热稳定性的介孔材料. 所得介孔材料具有蠕虫状的均匀孔道,骨架中不含有MCM-22的微观结构单元. 该介孔材料至少含有18%的表面活性剂,经823 K焙烧脱除表面活性剂后,其孔径为2 2 nm, 比表面积为 1 038 m2/g, 孔容为0 97 cm3/g. 焙烧后的介孔材料具有非常高的水热稳定性,经沸水回流100 h后其比表面积为896 m2/g, 孔容为0 90 cm3/g, 孔径为2 1 nm, 即使经过300 h的回流,该材料仍能保持698 m2/g的比表面积和0 90 cm3/g的孔容. 固体 29Si MAS NMR结果表明,该介孔材料的高水热稳定性与其高表面缩合度有关.  相似文献   

11.
The effect of hydrothermal treatment of the synthesis gel on the structure, hydrothermal and mechanical stabilities and acidity of MCM-41 and MCM-48 aluminosilicates synthesised at room temperature has been investigated by X-ray diffraction, nitrogen adsorption at 77 K and DRIFTS with pyridine as probe molecule. The influence of the Al content and pore size on the structure of the resulting treated Al-MCM-41 materials has also been studied. For all samples improvement of the structural ordering and increase of the pore size, was observed, with pore wall thickness remaining practically unchanged. For Al-MCM-48 an improvement of the pore size uniformity occurs during the treatment. Only a small loss of pore size uniformity occurred for Al-MCM-41 prepared with hexadecyltrimethylammonium bromide, but with samples prepared with tetra and octadecyltrimethylammonium bromide the treatment generated a bimodal pore size distribution. The pore volume increased (17%) in the case of Al-MCM-48 but decreased (5.5–14%) for Al-MCM-41, suggesting a decrease in surface roughness resulting from increase of the degree of condensation of the pore walls. Both treated and untreated samples presented relatively strong Brønsted sites and increase of the Lewis acidity was found to occur upon treatment. Treated samples were found to be more resistant to refluxing in boiling water and mechanical compaction, which was attributed to more polymerised pore walls, with Al-MCM-41 samples tested demonstrating higher stability than Al-MCM-48. However, the differences in stability of samples prepared with or without hydrothermal treatment were not significant. Both treated and untreated samples presented high hydrothermal stability. Although refluxing in boiling water lead to some loss of structural ordering, only a small decrease of pore volume (3–5.5% for Al-MCM-41 and 8-14% for Al-MCM-48) occurred, with practically no alterations in pore size and wall thickness. Ordered mesopore structure, with narrower pores and thicker walls, was still observed after compression at 590 MPa for most of the samples tested.  相似文献   

12.
This is a review of our recent reports about improving the hydrothermal stability of MCM-48 mesoporous molecular sieves and the related works done by other groups. It presents the different effects of direct addition of various anions, including F?, SO4 2?, NO3 ? and Cl?, on the improvement of the hydrothermal stability of MCM-48. The different effects of anions on the improvement of the hydrothermal stability and the critical factors influencing the formation of hydrothermally stable MCM-48 are also explained by careful analysis and discussion.  相似文献   

13.
用双表面活性剂为共模板合成中孔分子筛MCM-48   总被引:4,自引:0,他引:4  
利用水热法以非离子表面活性剂聚乙二醇辛基苯基醚和阳离子表面活性剂十六烷基三甲基溴化铵为共模板合成了中孔分子筛MCM-48.实验中发现利用较强的范德华力和氢键,聚乙二醇辛基苯基醚可在很大程度上降低合成MCM-48所需阳离子表面活性剂的用量,且利于制备有序性好、骨架聚合度高、稳定性好的MCM-48.通过调节聚乙二醇辛基苯基醚与十六烷基三甲基溴化铵的比例,可得到不同物相结构的分子筛.  相似文献   

14.
Hydrothermally stable and structrurally ordered mesoporous and microporous aluminosilicates with different pore sizes have been synthesized to immobilize cytochrome c (cyt c): MAS-9 (pore size 90 A), MCM-48-S (27 A), MCM-41-S (25 A), and Y zeolites (7.4 A). The amount of cyt c adsorption could be increased by the introduction of aluminum into the framework of pure silica materials. Among these mesoprous silicas (MPS), MAS-9 showed the highest loading capacity due to its large pore size. However, cyt c immobilized in MAS-9 could undergo facile unfolding during hydrothermal treatments. MCM-41-S and MCM-48-S have the pore sizes that match well the size of cyt c (25 x 25 x 37 A). Hence the adsorbed cyt c in these two medium pore size MPS have the highest hydrothermal stability and overall catalytic activity. On the other hand, the pore size of NaY zeolite is so small that cyt c is mostly adsorbed only on the outer surface and loses its enzymatic activity rapidly. The improved stability and high catalytic activity of cyt c immobilized in MPS are attributed to the electrostatic attraction between the pore surface and cyt c and the confinement provided by nanochannels. We further observed that cyt c immobilized in MPS exists in both high and low spin states, as inferred from the ESR and UV-vis studies. This is different from the native cyt c, which shows primarily the low spin state. The high spin state arises from the replacement of Met-80 ligands of heme Fe (III) by water or silanol group on silica surface, which could open up the heme groove for easy access of oxidants and substrates to iron center and facilitate the catalytic activity. In the catalytic study, MAS-9-cyt c showed the highest specific activity toward the oxidation of polycyclic aromatic hydrocarbons (PAHs), which arises from the fast mass transfer rate of reaction substrate due to its large pore size. For pinacyanol (a hydrophilic substrate), MCM-41-S-cyt c and MCM-48-S-cyt c showed higher specific activity than NaY-cyt c and MAS-9-cyt c. The result indicated that cyt c embedded in the channels of MCM-41-S and MCM-48-S was protected against unfolding and loss of activity. By increasing the concentration of the spin trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in ESR experiments, we showed that cyt c catalyzes a homolytic cleavage of the O-O bond of hydroperoxide and generates a protein cation radical (g = 2.00). Possible mechanisms for MPS-cyt c catalytic oxidation of hydroperoxides and PAHs are proposed based on the spectroscopic characterizations of the systems.  相似文献   

15.
MCM-48分子筛的高效合成途径   总被引:3,自引:1,他引:2  
王树国  吴东  孙予罕  钟炳 《化学学报》2001,59(7):1150-1152
以正硅酸乙酯(TEOS)为硅源,十六烷基三甲基溴化铵(CTAB)为模板剂,用水热合成法合成MCM-48,在合成过程中通过降低pH值等方法可以使得MCM-48的产率显著提高,当pH=7时,产率达到97%。XRD和物理吸附表明合成的介孔分子筛具有高比表面积(BET,~1000m^2/g)和规整的孔道结构且孔径集中在2.6nm左右。  相似文献   

16.
Mesoporous materials typified by MCM-41 possess well-ordered mesoporous channels with controllable pore sizes from 2-30 nm, and are expected as desirable materials for catalysis.However, silicious mesoporous materials generally do not have sufficient intrinsic catalytic activities.Thus many studies have focused on introducing catalytically active sites. It is expected that different synthetic methods would result in different coordination structures of metal cations introduced in MCM-41, and thus different catalytic properties in catalytic reactions. The author's group has used two methods, i.e., direct hydrothermal synthesis (DHT) and template-ion exchange (TIE), for the syntheses of V-, Fe-, and Cr-MCM-41 and applied them as catalysts to selective oxidations of hydrocarbons. This paper highlights the characterizations of the coordination structures of these metal cations introduced into MCM-41 by the DHT and the TIE methods, and the structural-property relationships of these metal ion-containing MCM-41 materials in selective oxidation reactions.MCM-41 was prepared by hydrothermal synthesis using hexadecyltrimethylammonium bromide and sodium silicate as the sources of template and silicon, respectively. In the DHT method, metal cations were directly added into the synthesis gel before hydrothermal synthesis, while the exchanging of metal ions in ethanolic solutions with the template cations contained in the uncalcined MCM-41 was performed in the TIE method. XRD and N2-adsorption measurements showed that the mesoporous regularity was not destroyed with both synthetic methods for all the metal ion-containing MCM-41 with appropriate contents of metal cations.For V-MCM-41, the characterizations with mainly EXAFS suggested that V5+ cations were in tetrahedral coordination and mainly incorporated inside the framework of MCM-41 to substitute Si4+in the samples by the DHT method. Tetrahedrally coordinated Vanadyl species were also obtained by the TIE method, but the VO4 was dispersed on the wall surface of MCM-41. The V-MCM-41-DHT showed higher selectivity in the partial oxidations of C3H8 and i-C4H10 to alkenes and acrolein and methacrolein, but the V-MCM-41-TIE exhibited better catalytic activities in the partial oxidation of CH4 to HCHO and the oxidative dehydrogenation of C2H6.For Fe-MCM-41, EXAFS studies indicated that the DHT method also resulted in Fe3+ cations incorporated inside the framework of MCM-41 if iron content was lower than ca. 1 wt%. However,aggregated iron oxides with iron in octahedral coordination were mainly observed in the calcined Fe-MCM-41 by the TIE method. In the partial oxidation of CH4 to HCHO with O2 and the epoxidation of styrene with H2O2, the Fe-MCM-41 by the DHT method exhibits remarkably higher catalytic performances than that by the TIE method.Chromium could not be incorporated inside the framework of MCM-41 to substitute Si4+, and both synthetic methods led to surface chromate species. However, the DHT method resulted in only monochromate species on the wall surface of MCM-41 while polychromate species existed over the sample by the TIE method as indicated by the UV-Raman spectroscopic studies. The two types of Cr-MCM-41 exhibited distinctly different catalytic behaviors in the partial oxidation of CH4 with O2.The Cr-MCM-41-DHT was remarkably more selective towards HCHO formation.  相似文献   

17.
混合表面活性剂与调节pH值法高效合成MCM-48   总被引:2,自引:0,他引:2  
翟尚儒  张晔  吴东  孙予罕 《化学学报》2003,61(3):345-349
以正硅酸乙酯(TEOS)为硅源、十六烷基三甲基溴化铵(CTAB)与曲拉通X- 100(TX-100)热合成中孔MCM-48.在合成过程中通过调节溶液pH值可有效提高MCM- 48的收率和水热稳定性,同时采用剂使模板剂的利用效率达到了6.0TEPOS/1.0 Surf.并通过XRD、N_2-吸附/脱附和FT-IR等测试手段对产物进行了表征.  相似文献   

18.
MCM-48介孔分子筛的高压合成   总被引:10,自引:0,他引:10  
采用正硅酸乙酯(TEOS)作硅源,十六烷基三甲基溴化铵(CTAB)为模板剂,在高压 (约7 MPa)和373 K下合成了MCM-48介孔分子筛.用XRD、氮气吸附及29Si MAS NMR对样品 进行了表征.与常压合成的相比,高压下合成的MCM-48具有更高的热稳定性和水热稳定性.2 9Si MAS NMR结果表明,高压有利于分子筛孔壁的聚合,导致分子筛结构更加完善,从而使 其具有更高的稳定性.  相似文献   

19.
含锡介孔分子筛MCM-48的合成、表征及催化性能   总被引:1,自引:0,他引:1  
自M41S问世以来[1],其在吸附、催化及催化剂载体等领域的应用成为人们研究的热点。但纯硅M41S本身不具有催化活性中心,不能直接应用于催化反应中,将具有催化活性的金属掺杂在分子筛骨架中是赋予M41S系列介孔分子筛催化性能的重要手段。文献[2,3]已报道了一些金属掺杂在MCM-41中  相似文献   

20.
李云赫  洪新  高畅  牛晓青  唐克 《燃料化学学报》2019,47(10):1195-1204
制备了介孔MCM-41分子筛和三种杂原子(Zn、Ba和Ce)介孔MCM-41分子筛,通过X射线衍射(XRD)、红外光谱(FT-IR)、低温N_2吸附-脱附等手段对其进行表征,研究了几种介孔分子筛对氮含量为1732μg/g含喹啉模拟柴油的吸附脱氮性能。结果表明,所制备的几种分子筛均具有典型的介孔结构,且杂原子已进入到分子筛骨架中。利用Materials Studio软件构建介孔分子筛模型,模拟的XRD谱图与实验结果基本相符;进一步模拟了喹啉分子在杂原子介孔分子筛团簇上的吸附,计算了吸附能及被吸附分子和吸附中心的距离(d_((N-M)))。几种分子筛的吸附脱氮性能顺序依次为Zn-MCM-41 Ce-MCM-41 Ba-MCM-41 MCM-41;Zn-MCM-41的吸附性能最好,吸附能最大,吸附分子和吸附中心的距离d_((N-M))最小。吸附时间对杂原子介孔分子筛的吸附脱氮性能具有较大影响,而吸附温度的影响相对较小;Zn-MCM-41、Ba-MCM-41和Ce-MCM-41分子筛的最佳吸附时间分别为40、10和30 min,最佳吸附温度分别为40、30和40℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号