首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
报道了一种分离甲苯、2-甲基噻吩和3-甲基噻吩的方法。通过氯化反应将沸点非常接近的甲苯、2-甲基噻吩和3-甲基噻吩转化为沸点相差较大的甲苯(111℃)、2-氯-5-甲基噻吩(155℃)和2,5-二氯-3-甲基噻吩(185℃),通过对比实验获得氯代反应的最佳条件为:2-甲基噻吩和3-甲基噻吩与磺酰氯的投料比1∶1. 75,反应温度65℃,反应时间2 h。通过精馏将三者分离并提纯,得到甲苯、高附加值的2-氯-5-甲基噻吩和2,5-二氯-3-甲基噻吩产品;通过催化还原反应将2-氯-5-甲基噻吩和2,5-二氯-3-甲基噻吩分别还原为2-甲基噻吩和3-甲基噻吩,达到完全分离、提纯的目的。  相似文献   

2.
李杰  陈浩  周勋  陆秀宏  陈国良 《有机化学》2008,28(9):1637-1640
以4,4,4-三氟乙酰乙酸乙酯与氰基乙酰胺为起始原料, 经环合、氯化、催化氢解和还原四步反应高纯度、高收率地得到了3-氨甲基-4-三氟甲基吡啶. 改进后的合成方法具有低成本、分离纯化容易、设备要求低等优点, 适合工业化生产.  相似文献   

3.
甲基脲和氰乙酸经缩合、环化制得3-甲基-4-氨基脲嘧啶(2);2与亚硝酸盐经亲电加成制得3-甲基-4-氨基-5-亚硝基脲嘧啶(3);3经加氢还原、酰化、闭环及酸化合成了3-甲基黄嘌呤(6a)及其衍生物(6b~6f,其中6c ~ 6f为新化合物),其结构经1H NMR和FT-IR表征.  相似文献   

4.
以2,4-二甲基-6-叔丁基苯酚、多聚甲醛和三氯氧磷为原料,在四氯化碳溶剂中合成了6-叔丁基-3-氯甲基-2,4-二甲基苯酚并确定较佳的工艺条件,分别考察了物料配比、反应温度、反应时间和相转移催化剂用量对反应收率的影响。确定较佳工艺为:在四氯化碳溶剂中,反应温度为40℃,2,4-二甲基-6-叔丁基苯酚用量为60 g,多聚甲醛12 g,浓盐酸30 g,相转移催化剂4 g,三氯氧磷40 g。在上述条件下,6-叔丁基-3-氯甲基-2,4-二甲基苯酚的收率为95%,纯度>99%(HPLC面积归一化法),产品结构经IR、MS和~1H-NMR表征。  相似文献   

5.
以甲基乙烯酮为原料,用乙炔基格氏试剂对其加成,然后水解得到目标物3-甲基-1-戊烯-4-炔-3-醇。研究了温度对反应的影响,发现在25℃的反应温度下,目标化合物的气相色谱产率为50%,减压蒸馏纯化后收率为30%。目标产物用1HNMR、IR进行了表征。  相似文献   

6.
2-氰基-2,3-二甲基-3-甲基羰甲基-5-硫酮-吡咯烷的合成   总被引:2,自引:0,他引:2  
胡炳成  吕春绪 《应用化学》2004,21(11):1165-1168
2-氰基-2;3-二甲基-3-甲基羰甲基-5-硫酮-吡咯烷的合成;双甲基环并内酯;双甲基环并内酰胺-内酯;氰基吡咯烷酮;氰基吡咯烷硫酮  相似文献   

7.
单绍军 《化学通报》2007,70(2):155-156
以邻甲基苯酚为原料,与1-氯-2-甲基-2-丁烯反应生成2-甲基-6-(3-甲基-2-丁烯基)苯酚,然后催化氧化得到目标产物2-甲基-6-(3-甲基-2-丁烯基)对苯二醌。该合成路线简单,易于操作,最终收率51%。  相似文献   

8.
本文报道了四种2-亚甲基-1,3-二氧己烷类单体:4-甲基-2-亚甲基-1,3-二氧己烷(Ⅱ)、4,6-二甲基-2-亚甲基-1,3-二氧己烷(Ⅳ)、5,5-二甲基-2-亚甲基-1,3-二氧己烷(Ⅵ)和5,5-二乙基-2-亚甲基-1,3-二氧己烷(V Ⅲ)的合成以及自由基开环聚合。结果表明,上述单体在聚合过程中出现异构化开环现象。Ⅲ和Ⅳ的甲基位置在环上氧原子的α-碳原子上时,显示对异构化反应的影响比Ⅵ及Ⅷ的甲基和乙基在β-碳原子上时更显著。上述现象与异构化开环形成仲碳自由基中间体的倾向更大有关。 Ⅳ在苯溶液中及过氧化二叔丁基存在下,120℃反应,得到全部是聚-δ-戊内酯骨架结构的聚合物。提出了一种合成聚-δ-戊内酯类链结构的聚酯的新的途径和方法。  相似文献   

9.
首次报道了以苄氧羰氧次甲基作为6-甲基尿嘧啶环上N1位的保护基.选择性的在尿嘧啶环上N1保护、N3取代及N1脱保护等反应都在简便、高收率条件下进行,经四步反应高选择性地合成了3-N-取代-6-甲基尿嘧啶.  相似文献   

10.
3-甲基-3-氧杂丁环甲醇的阳离子型开环聚合   总被引:3,自引:0,他引:3  
三元和四元环醚具有较大的环张力而易于聚合.Vandenberg等[1]曾经以(i-Bu3)Al/H2O为引发剂,使3-甲基-3-(三甲基硅氧甲基)氧杂丁环进行开环聚合反应,合成的聚合物水解后得到线形的聚甲基羟甲基醚.本文以BF3·OEt2为引发剂,对3-甲基-3-氧杂丁环甲醇进行直接引发,实现了开环聚合反应,得到基本线形或轻度支化的聚醚多元醇.1 实验部分1.1 聚合物的合成 聚合装置同文献[1].所用试剂按文献[1]方法处理.向烧瓶中加入20mL的二氯乙烷和0.1mol3-甲基-3-氧杂丁环甲…  相似文献   

11.
[Ru3(CO)12]与Lawesson试剂[(MeOC6H4PS2)2]反应,合成、分离并用谱学表征了产物三核钌羰合簇[(μ-H)2Ru3(CO)93-P)](Ⅰ)和四核钌羰合簇[(Ru4(CO)103-S)(μ3-PC6H4OMe)](Ⅰ).X射线衍射测定了的晶体分子结构,表明含有1个裸磷原子作为面桥基配体,并具有颇短的Ru-Ru键距,该价电子数为49e的簇合物对氧和水稳定.谱学分析表明,化合物具有四面体型的Ru4簇心,其三角形面上分别具有面桥基μ3-S和μ3-PC6H4OMe基配体.  相似文献   

12.
本文基于多巴胺与其第三受体复合蛋白(D_3R)结构,采用分子动力学技术Gromacs 4.5程序中的伞形样本方法,研究多巴胺在多巴胺第三受体蛋白结构中的运动轨迹及其过程中自由能变化,探讨多巴胺在其分子通道上传输运动机制动力学。分子模拟表明,处在发挥神经递质作用部位的多巴胺,通过D_3R结构中的功能分子通道沿着y+轴朝细胞外方向传输运动的自由能变化数值为134.6 kJ?mol~(-1),沿着y-轴朝细胞内传输运动的自由能变化为211.5 kJ?mol~(-1)。在D_3R结构中,多巴胺沿着x+、x-、z+、z-轴朝细胞双层膜方向传输运动的自由能变化分别为65.8、245.0、551.4、172.8 kJ?mol~(-1),数值说明DOP更容易沿着x+轴方向从TM5(第五跨膜螺旋)与TM6(第六跨膜螺旋)缝隙之间离开D_3R内部结构。处在细胞间隙空间的自由多巴胺,在等温等压条件下沿着逆y+轴方向通过多巴胺第三受体内功能分子通道,到达发挥神经递质作用的部位是一个自发过程,因为在该轨迹上多巴胺分子与受体相互作用是一个负自由能变化(-134.6 kJ?mol~(-1))。所以,多巴胺与多巴胺受体很容易相互结合,发挥神经递质作用。发挥了神经递质功能作用的多巴胺分子,沿着x+轴方向的保护分子通道从TM5与TM6缝隙之间离开D_3R内部结构,避免过度发挥多巴胺神经递质功能作用。根据多巴胺功能和保护分子通道观点,我们提出帕金森病新病理和精神分裂症新病理。论文还探讨多巴胺分子通道理论及其新病理应用于治疗控制这两种病症及其相关药物研究开发。  相似文献   

13.
Reaction of (μ3-CCH3)CO3(CO)9 (I) with dppm (dppm = bis-(diphenylphosphino)methane) affords the cluster (μ3-CCH3)Co3(CO)7-dppm (II). The crystal and molecular structure of II have been determined at −160°C. The dppm ligand bridges one of the three metal—metal edges in the equatorial plane to give a five-membered ring, which adopts an envelope conformation.

Cluster II functions as a catalyst for the hydroformylation of 1-pentene (80 bar of H2/CO (1/1); 110°C). The results indicate that the dppm bridging ligand stabilizes and activates the cluster for catalysis, and open the way to the synthesis of chiral clusters.  相似文献   


14.
左旋苯丙胺(又称左苯丙胺, RAT)在临床上被用于治疗多种病症,作用在中枢神经细胞多巴胺受体上,同时它具有依赖性和成瘾性。为了探讨RAT被用作药物的药理和成瘾机制,本文用分子模拟获得RAT与多巴胺第三受体(D3R)复合蛋白优化结构,并且采用伞形样本平均力势(PMF)方法和卵磷脂脂质分子模拟生物膜,采用分子动力学模拟获得RAT在D3R结构中分子通道运动轨迹和自由能变化。RAT通过D3R结构中的功能分子通道,朝细胞外方向传输运动的自由能变化为91.4 kJ·mol-1。RAT通过D3R结构中的保护分子通道,朝细胞双层膜方向传输运动的自由能变化为117.7 kJ·mol-1。自由能数值表明RAT分子更容易通过D3R结构中的功能分子通道,发挥其功能作用,增大功能多巴胺分子的释放,导致包括依赖性和成瘾性多种功能效果。研究结果证明RAT被用作药物的药理和成瘾机制与它在多巴胺受体中的分子通道上传输动力学和机制有密切关联。  相似文献   

15.
Relative emission spectra for the bent to linear, CO2(1B2)---CO2(X1Σ+g) transitions have been calculated using the model: harmonic oscillator, symmetric-top wavefunctions and energy levels for CO2(1B2); first-orer Fermi resonance vibrational wavefunctions and energy levels for CO2(X1Σ+g); a Boltzmann distribution of vibrational and rotational states in CO2(1B2); and a constant electronic transition moment. With the literature CO2(1B2) molecular structure, spectra calculated using this model show characteristics similar to the low-temperature chemiluminescence from the combination of atomic oxygen and carbon monoxide. The calculated spectra account for experimental band positions to wavelengths of 570 nm and the weak dependence of the spectra on temperature over the range 206–353 K. The latter result was obtained from a CO2(1B2) bending fundamental of 600 cm−1. The calculated spectra also show a violet-shift in intensity and an attenuated band structure at higher temperatures. The magnitude of these effects depends on the CO2(1B2) force constants and not on the CO2(1B2) molecular structure.  相似文献   

16.
采用键合法将吡啶甲磺酸盐离子液体负载在HZSM-5分子筛上,得到分子筛负载型离子液体催化剂,并将其用于聚甲醛二甲醚(PODEn)的合成。X射线衍射、红外光谱和N2吸附-脱附表征结果显示,吡啶甲磺酸盐离子液体较好地固载于分子筛上。用于催化合成PODEn时较适宜的反应条件为:离子液体负载量0.25 g、甲醇与三聚甲醛的物质的量比(即醇醛比)1.5、110℃、反应时间3 h,催化剂用量为总反应物质量的2.2%。缩合产物中柴油添加组分PODE3~8收率可达67.35%;与单纯离子液体或分子筛催化效果相比,PODE3~8收率得到提高。固载化离子液体易回收,可重复利用;当重复使用3次后,PODE3~8收率仍能达到45.62%。  相似文献   

17.
IR (4000-30 cm−1) and Raman (4000-0 cm) spectra of [(CD3)3S]I have been observed, together with those of [(CH3)3S]I. By assuming a C3v molecular symmetry for the cations [(CH3)3S]+ and [(CD3)3S]+, all the active fundamentals of [(CD3)3s]+ have been assigned and normal coordinate calculations have been carried out by a symmetry force field for [(CH3)3S]+ and [(CD3)3S]+. The strength of the S---C and C---H bonds in the compound has been compared with that in dimethyl sulfide by using their valence stretching force constants.  相似文献   

18.
Two previously unknown electronic states of NaLi molecule have been observed by polarisation labelling spectroscopy in the energy region of 29 900–34 100 cm−1 above the bottom of the molecular ground state potential well. The states are identified as 31Π(Na(3d) + Li(2s)) and 41Π(Na(4p) + Li(2s)). The Dunham coefficients are derived for both states and the potential energy curves constructed by the Rydberg–Klein–Rees method.  相似文献   

19.
采用分子动力学模拟的方法,研究了LiCl-KCl-CeCl3熔盐中CeCl3的结构性质和热力学,获得了LiCl-KCl-CeCl3熔盐中密度与组成、密度与温度的关系数据;径向分布函数gCe-Cl(r)的第一个峰位置为0.259nm, Ce3+对应的第一个配位数约为6.9;混合熔盐中计算数据与纯熔盐中数据的差异可以解释为混合熔盐中Ce3+和Cl-的相互作用比纯的CeCl3更强; LiCl-KCl熔盐中Ce3+的自扩散活化能为22.5 kJ·mol-1,从活化能的本质来说, Ce3+自扩散所需要克服的能垒要略低于U3+(25.8 kJ·mol-1)。当Ce3+的摩尔分数从0.005增加到0.05时,其指前因子从31.9×10-5 cm2·s-1减少到21.8×10-5 cm2·s-1;随着Ce3+摩尔分数从0.005增长到0.05,单位体积内(忽略总体积的变化)Ce3+的增加意味着其扩散阻力增加,而自扩散的能力降低,导致了指前因子的减小。  相似文献   

20.
The molecular structure of CF3SiH3 in the gas phase has been determined by electron diffraction analysis. Combined with a B0 value derived from high resolution infrared spectra, this yielded r(SiC), 1.923(3) Å, r(SiH) 1.482(5) Å, r(CF) 1.348(1) Å, FCF 106.7(5)° and HSiH 110.3(10)° (r° values). The gas phase infrared and liquid phase Raman spectra of CF3SiH3, CF3SiH2D, CF3SiD3 have been measured and assigned, and force constants have been calculated by means of a normal coordinate analysis based on 52 experimental frequencies. The weakness of the SiC bond is confirmed by the low f(SiC) value of 2.54 N cm−1. Infrared spectra recorded with a resolution of 0.04 cm−1 at 240 K revealed rotational structure of vibrational bands. Rotational analyses of most parallel and a few perpendicular bands of CF3SiH3 and CF3SiD3 have been performed. Ground and excited state vibrational parameters have been obtained and used as supplementary data for the determination of the harmonic force field. Strong blending of all bands due to hot band cascades was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号