首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
田景晨  吴功德  刘雁军  万杰  王晓丽  邓琳 《化学进展》2021,33(11):2069-2084
甲醛是室内常见的挥发性有机污染物之一,长期接触会严重危害人体健康。负载型廉价金属催化剂在甲醛去除和实际应用方面表现出优异性能,引起研究人员的广泛关注。本文阐述了低温条件下负载型廉价金属催化剂在甲醛热催化氧化、光催化氧化和等离子协同催化氧化方面的研究进展,介绍了甲醛低温催化的影响因素,并讨论了反应机理。反应条件、载体类型和制备方式是影响甲醛低温催化活性的重要因素。虽然负载型廉价金属催化剂在甲醛光催化氧化和热催化氧化方面均表现出良好性能,但仍须进一步探究提升其在可见光和室温下的催化活性。对于甲醛等离子协同催化氧化,降低反应过程所产生的副产物和能耗仍是研究重点。此外,本文还对负载型廉价金属催化剂在甲醛催化应用中的发展方向进行了展望。  相似文献   

2.
CO2的过量排放导致温室效应对环境的影响越来越严重,通过电催化、光催化、热催化、光热催化或光电催化将CO2还原成高附加值的化学品是解决CO2排放的有效途径.其中, CO2的光热催化转化是当前的主要研究领域之一.我们对光热催化进行了总结分类:热助光、光助热、光驱热和光热协同催化,并详细介绍相应的催化机理,总结了金属催化剂用于光热催化CO2还原的最新研究进展,最后提出了光热催化面临的挑战与展望.  相似文献   

3.
张宇  张佳慧  刘诗鑫  赵震 《化学通报》2023,86(7):833-843
挥发性有机化合物(VOCs)对环境的严重污染和对人体的危害引起了人们的重视。冷等离子体与催化剂耦合形成的协同效应可显著提高VOCs低温转化速率,减少二次污染和降低能耗,具有较好的应用前景。协同催化效果主要取决于催化剂物化性能,可通过调控催化剂的组成、粒径和结构改善协同催化活性。锰基氧化物因其具有较高的储氧能力、稳定的晶体结构、较好的氧气活化性能和良好的抗中毒能力等优点而被广泛应用于冷等离子体协同催化净化VOCs的应用研究。通过金属离子掺杂调控锰基氧化物的离子价态、氧迁移率和氧气吸附量,是改善催化剂与等离子体协同催化性能主要方法。本文总结了近年来锰基氧化物与冷等离子体协同催化氧化VOCs的研究进展,主要包括氧化锰晶型、分散度和掺杂金属离子对协同催化氧化VOCs的活性影响趋势及反应机理。分析冷等离子体与锰基氧化物催化剂协同氧化VOCs中存在的问题并对其发展前景进行了展望。  相似文献   

4.
介孔硅材料由于具有大的比表面积,均一的孔结构和大的孔径,常被用于分离、吸附和催化等领域.本文综述了近年来国内外介孔硅材料及其负载型催化剂去除各类挥发性有机物(VOCs)的研究进展,主要包括烃类、甲醇、甲醛、丙酮、苯、甲苯、萘、乙酸乙酯等.讨论了介孔硅材料的结构对VOCs吸附过程的影响;介绍了不同催化剂消除各类VOCs的催化性能及反应机理,并重点评述了甲苯在不同催化剂上的研究进展.分析结果表明,介孔硅材料的表面环境、孔道结构以及宏观形貌是影响VOCs分子在介孔硅材料上吸附的主要因素;贵金属催化剂的应用需要提高其抗中毒性以及降低成本;过渡金属的研究应着重于研发高活性的负载型过渡金属复合氧化物催化剂.最后对国内外介孔硅材料及其负载型催化剂的发展进行了展望,今后催化剂的设计可以从“氧化硅载体”和“介孔孔道”两个方面展开,这将为设计合适的催化剂处理各类VOCs污染物提供一定参考.  相似文献   

5.
张珍珍  李鑫恒 《分子催化》2019,33(4):382-390
甲醛(HCHO)作为挥发性有机物(Volatile Organic Compounds,VOCs),其催化氧化技术具有起燃温度低、设备简单、净化效率高等优点,被广泛采用,催化氧化催化剂主要为贵金属以及过渡金属氧化物.我们综述了近年来催化氧化甲醛的最新研究进展,尤其是甲醛催化氧化机理和提高催化活性的策略.最后,对催化氧化技术在甲醛催化氧化反应中的未来发展方向和趋势进行了展望.  相似文献   

6.
三维有序介孔二氧化锰制备及其甲醛催化氧化性能   总被引:2,自引:0,他引:2  
空气中的甲醛主要来源于化工、建材、涂料、装潢材料以及机动车尾气.甲醛具有光化学活性,对人体具有致癌致畸作用.高浓度甲醛对人体健康和空气环境危害极大,室内低浓度甲醛对人体也有很大伤害.因此,消除室内、机动车尾气以及工业生产过程中的甲醛非常必要.目前,去除甲醛的方法主要有吸附法、光催化法和催化燃烧法.其中,催化燃烧法具有去除效率高、起燃温度低、适用范围广、设备操作简单以及无二次污染等优点,因而非常适用于去除高浓度和低浓度甲醛.该方法的核心是催化剂的制备和筛选.近年来,用于甲醛催化燃烧的催化剂主要是负载型贵金属和金属氧化物.由于贵金属催化剂成本较高,所以金属氧化物催化剂备受关注.MnO2种类繁多,既包括人工合成的棒状、线状、管状、球状和孔状等形貌,还包括自然界存在的α,β,γ和δ等类型.其中,介孔MnO2因具有较大的比表面积和特殊的孔道而应用于乙醇、甲苯、苯等挥发性有机物的催化氧化反应.目前,尚未见三维(3D)有序介孔MnO2催化氧化甲醛的报道.本文以合成的3D有序介孔KIT-6分子筛为硬模板剂,采用纳米浇筑法制备出3D有序介孔MnO2材料.为了比较,采用水热法合成了α-MnO2和p-MnO2纳米棒.采用X射线粉末衍射、N2吸附-脱附、透射电子显微镜和X射线能谱(XPS)等方法对催化剂进行了表征.在微型固定床石英管反应器上评价了催化剂催化甲醛氧化活性,采用气相色谱(GC)联接热导检测器(TCD)和质谱检测器(MSD)检测产物和反应物的含量.表征结果表明,3D-MnO2复制了KIT-6硬模板的三维有序立方对称介孔结构(ia3d),且具有金红石型β-MnO2晶相,属软锰矿,具有较大的比表面积和双孔分布介孔结构,最大孔径分别位于3.7和11.4nm处.3D-MnO2样品具有清晰的孔道结构,而α-MnO2和p-MnO2纳米棒为无孔的一维纳米单晶材料.另外,3D-MnO2表面暴露了较多的(110)晶面,有利于增加表面Mn4+离子.XPS结果证实3D-MnO2表面存在较多的Mn4+离子,这些Mn4+离子为甲醛催化反应提供了丰富的活性位,有利于提高甲醛氧化活性.评价结果表明,3D-MnO2具有良好的低温催化性能,于130℃即可将甲醛完全转化成CO2和H2O;而在同样条件下,α-MnO2纳米棒和β-MnO2纳米棒分别在140和180℃才能完全转化甲醛.3D-MnO2具有良好的甲醛催化性能主要归因于特殊的介孔结构、较大的比表面积和较多的表面Mn4+离子.  相似文献   

7.
随着工业化的推进,化石能源的消耗产生大量温室气体,其中CH4和CO2占据温室气体排放的98%以上。将CH4和CO2转化为高附加值化学品具有重要的意义,一直受到工业界和学术界广泛关注。传统的热催化甲烷干重整(DRM)可实现将CH4和CO2转化为合成气,但该反应过程受热力学限制,需要很高的能量输入,并且由于反应温度较高,催化剂易发生积碳而失活。绿色环保的光催化技术可以使甲烷干重整反应在温和条件下进行,但是存在太阳光利用率和反应转化率较低等问题。最近光热协同催化受到学术界广泛关注。许多研究结果表明,在相对温和的条件下,光热催化DRM可以获得良好的催化效果,可有效实现太阳能转化为化学能。本文简要介绍近期光热催化甲烷干重整反应的研究进展,总结不同金属催化剂在光热催化甲烷干重整中的应用,同时提出了光热催化甲烷干重整存在的一些挑战及展望。  相似文献   

8.
为有效提高负载型催化剂中贵金属的原子利用效率,贵金属单原子催化剂逐渐成为一个研究热点和前沿课题.我们针对单原子催化剂在催化氧化领域中的应用,综述了几种贵金属单原子催化剂的典型制备方法,包括原子层沉积法、湿法化学法、光化学辅助法、热解法等,并讨论了上述方法的优缺点.此外,对比传统贵金属负载型催化剂,我们重点讨论了贵金属基单原子催化剂在CO催化氧化、挥发性有机化合物(VOCs)催化氧化、催化机理等催化氧化过程中的最新研究进展,尤其是贵金属基单原子催化剂在低温低浓度催化氧化过程中表现出的优异催化活性、抗水性和抗毒性,表明该类催化剂具备极大的工业应用潜力.最后,进一步从大规模工业应用角度探讨了单原子催化剂目前面临的挑战和可能的解决办法,期望可以为应用于催化氧化过程的高效、稳定的单原子催化剂的设计提供思路.  相似文献   

9.
人口的快速增长和高能源需求产业造成了严重的环境问题。太阳能等替代性的清洁能源对于缓解能源危机和温室效应至关重要。光催化是一种很有前途的方法,但它在转化率、效率和规模化方面存在局限性。光热催化则结合了光化学和光热效应,是在温和条件下有效催化化学反应的新概念。近年来,与传统的光热催化剂相比,硅纳米结构阵列在光热CO2还原反应中表现出独特的催化性能优势。作为一种平台,它表现出优异的光收集能力、高比表面积以及多样化的材料复合选择。本文综述了光热催化CO2转化的概念和原理,硅纳米结构阵列的功能,以及利用硅纳米结构阵列在光热催化CO2转化方面的最新进展,最终将为高性能纳米结构阵列光热CO2催化剂的发展方向提供指导。  相似文献   

10.
冯爱虎  于洋  于云  宋力昕 《化学学报》2018,76(10):757-773
挥发性有机物(VOCs)的排放对自然环境、人类健康产生了严重危害,吸附法和催化氧化法是治理VOCs的有效方法.沸石分子筛含有丰富的微孔,比表面积大,且含有较多的酸位点,具有一定的催化活性,十分适合作为催化剂载体材料,被广泛应用于分离、吸附及催化等领域.本文综述了不同沸石分子筛吸附去除及沸石基负载型催化剂催化氧化去除烷烃、芳香烃、醛类、酮类、酸类、酯类、醇类及氯代烃等VOCs的研究进展.分析表明,沸石吸附剂的孔道结构、硅铝比、表面物理化学性质,VOCs种类、极性、亲水性,对沸石分子筛吸附性能影响较大;沸石载体表面酸碱度,催化剂活性组分种类、分散性,VOCs种类等是影响负载型催化剂催化活性的重要因素;沸石载体和活性组分之间存在协同作用,赋予了负载型催化剂优异的催化活性.沸石负载贵金属催化剂对各类VOCs的催化氧化性能优于沸石负载金属氧化物催化剂,但贵金属价格昂贵,成本较高,通过合理设计多组分金属氧化物催化剂,可显著提高负载型催化剂的催化活性.此外,本文对沸石分子筛及其负载型催化剂去除VOCs的未来研究方向进行了展望.  相似文献   

11.
Recently, solar-driven synthesis due to its energy-saving and environmentally friendly advantages has attracted more and more attention, whereas the low solar-to-chemical conversion efficiency significantly hindered its development. New effective options that fully utilize full-band sunlight are urgently needed. Novel photothermal catalysis combined with the advantages of photocatalysis and thermalcatalysis can improve the utilization efficiency of solar energy and lower the reaction temperature, thus becoming a promising technology. This review divides photothermal catalysis into photo-assisted thermalcatalysis, thermal-assisted photocatalysis, and photothermal synergistic catalysis. Furthermore, the catalytic mechanical understanding of how photothermal affects the catalytic property of different applications(e.g., water splitting, CO2/N2 reduction, and environmental treatment) was also summed up and discussed in detail. The discussion ends with unsolved challenges in photothermal catalysis, particularly emphasizing the effect of temperature or sunlight on catalytic performance.  相似文献   

12.
传统热催化和低温光催化体系在实际应用中都存在技术缺陷.近些年,人们通过将光和热耦合,克服它们各自的局限性,开创了光热协同催化新领域.目前已在CO减排、CO甲烷化和VOCs降解等诸多应用领域得到应用.当然,随着光热催化的发展,研究者也一直在思考光热协同的内在作用机理.目前大多数的机理分析都是从材料本身出发,通过研究表面反应、光吸收或金属与载体之间的电子转移行为来探讨光热协同效应.然而,表面反应只是多相光催化反应的其中一个步骤,此外还包括反应物的扩散和吸附及产物的脱附和扩散,其中反应物的吸附过程因其多变的吸附行为可能在整个反应过程中起着重要的作用.光热协同可能通过作用于气体吸附过程来调节反应的选择性和活性,但到目前为止,两者之间的内在联系尚不清楚.所以,从反应物气体吸附行为(尤其是吸附电子转移行为)的角度深入研究光热协同效应具有重要意义.本文在光催化CO还原和H2氧化体系中引入一定的热条件,希望通过热驱动效应影响H2/CO吸附时的电子转移行为,进而改变反应行为.为简化实验附加条件,选用常见的具有合适带隙宽度以及良好光吸收的ZnO作为研究材料,通过水热法合成了在(100)晶面具有氧空位(VOs)的ZnO样品,引入气敏传感系统检测不同光热条件下的H2/CO气体吸附电子转移行为,并结合多种原位手段从物质结构和气体吸附两个角度出发,分析光热条件下气体吸附行为变化的机理.与我们预测一致,在紫外光照下随着温度的升高,光热协同作用于(002)晶面,原位生长了锌空位(VZns),为H2分子提供吸附位点.H2从Vos位点吸附转移到VZns上,并导致H2(ads)从得电子转变为失电子行为(形成有利于H2氧化的定向吸附),从而发生H2氧化反应.对于同样吸附在高表面能(002)晶面上的CO分子来说,光热协同效应通过抬升材料费米能级来改变其电子转移行为,CO(ads)由失电子转变为得电子行为(形成有利于CO还原的定向吸附),并进一步被失去电子的H2(ads)还原.此外,还发现CO或H2的光催化氧化反应的发生只依赖于CO或H2单分子的定向活化(不考虑O2的吸附和活化),表明其归属于E-R反应过程.而CO的光催化还原反应需要同时满足CO和H2双分子的定向活化,可能归属于L-H反应过程.综上,本文研究结果表明,光热协同内在作用可能是通过改变ZnO材料结构,调节反应物吸附动力学中的电子转移行为,从而引起反应物的定向活化,进而改变反应选择性.  相似文献   

13.
在以碳中和为目标的全球共识下,太阳能作为一种取之不竭用之不尽的绿色环保能源被认为是替代传统化石燃料最有潜力的方式。在各种太阳能转换技术中,光热催化不仅可以最大化利用太阳能,在光场和热场双重驱动力作用下,还可以显著提升化学反应速率,引起广泛的研究兴趣。以孤立的单个原子均匀分散在载体上形成的单原子催化剂具有100%原子利用率、优异的催化活性、热稳定性等优势。因此,将单原子催化剂应用于光热催化开始受到越来越多的关注。本综述介绍了光催化、热催化和光热催化的基本原理和特征,同时列举一些典型的例子。随后以不同载体作为分类标准,总结了单原子光热催化应用的前沿研究进展。最后,提出了该催化体系所面临的挑战和未来的发展方向。本文旨在全面了解单原子催化剂在太阳能驱动光热催化领域的研究现状并为未来发展提供可行的建议。  相似文献   

14.
Incorporating high-energy ultraviolet (UV) photons into photothermal catalytic processes may enable photothermal-photochemical synergistic catalysis, which represents a transformative technology for waste plastic recycling. The major challenge is avoiding side reactions and by-products caused by these energetic photons. Here, we break through the limitation of the existing photothermal conversion mechanism and propose a photochromic-photothermal catalytic system based on polyol-ligated TiO2 nanocrystals. Upon UV or sunlight irradiation, the chemically bonded polyols can rapidly capture holes generated by TiO2, enabling photogenerated electrons to reduce Ti4+ to Ti3+ and produce oxygen vacancies. The resulting abundant defect energy levels boost sunlight-to-heat conversion efficiency, and simultaneously the oxygen vacancies facilitate polyester glycolysis by activating the nucleophilic addition-elimination process. As a result, compared to commercial TiO2 (P25), we achieve 6-fold and 12.2-fold performance enhancements under thermal and photothermal conditions, respectively, while maintaining high selectivity to high-valued monomers. This paradigm-shift strategy directs energetic UV photons for activating catalysts and avoids their interaction with reactants, opening the possibility of substantially elevating the efficiency of more solar-driven catalysis.  相似文献   

15.
Solar-to-fuel conversion through photocatalytic processes is regarded as promising technology with the potential to reduce reliance on dwindling reserves of fossil fuels and to support the sustainable development of our society. However, conventional semiconductor-based photocatalytic systems suffer from unsatisfactory reaction efficiencies due to limited light harvesting abilities. Recent pioneering work from several groups, including ours, has demonstrated that visible and infrared light can be utilized by plasmonic catalysts not only to induce local heating but also to generate energetic hot carriers for initiating surface catalytic reactions and/or modulating the reaction pathways, resulting in synergistically promoted solar-to-fuel conversion efficiencies. In this perspective, we focus primarily on plasmon-mediated catalysis for thermodynamically uphill reactions converting CO2 and/or H2O into value-added products. We first introduce two types of mechanism and their applications by which reactions on plasmonic nanostructures can be initiated: either by photo-induced hot carriers (plasmonic photocatalysis) or by light-excited phonons (photothermal catalysis). Then, we emphasize examples where the hot carriers and phonon modes act in concert to contribute to the reaction (plasmonic photothermal catalysis), with special attention given to the design concepts and reaction mechanisms of the catalysts. We discuss challenges and future opportunities relating to plasmonic photothermal processes, aiming to promote an understanding of underlying mechanisms and provide guidelines for the rational design and construction of plasmonic catalysts for highly efficient solar-to-fuel conversion.

Hot carrier activation and photothermal heat can be constructively coupled using plasmonic photothermal catalysts for synergistically promoted solar-to-fuel conversion efficiency.  相似文献   

16.
利用太阳能缓解能源危机和解决环境污染,是当前和未来的全球性课题.其中,光催化技术的研究步伐日渐加快.这不仅体现在光催化材料种类的增加,更体现在以光催化为基础的多场协同催化,特别是光热耦合作用成为增强光催化性能的一种高效、可靠的方法.氧空位的引入不仅可以拓宽催化剂对可见光的吸收、抑制载流子的复合、促进反应物的吸附以及降低反应的活化能,而且对于光热协同催化效率的提升有着重要的贡献.然而,目前光热协同催化的表征多局限于常规的光催化手段.开展光热耦合下的测量技术对深刻理解光热催化是十分必要的.本文研究温度、气氛、氧空位浓度对TiO2光电导的影响,构建光电导与光热催化活性之间的关系.我们将商用的ST-01 TiO2制成浆料,利用丝网印刷法将浆料覆盖在刻有沟槽的FTO上,并通过N2/H2混合气不同温度退火,得到不同氧空位含量的TiO2薄膜(Ov-TiO2).采用紫外-可见光谱(UV-Vis),拉曼光谱(Raman),电子顺磁共振(ESR)等手段对样品进行了表征.结果表明,N2/H2退火温度越高,氧空位浓度越高.我们对不同浓度氧空位的样品进行了光催化及光热协同催化CO2还原实验.结果表明,适量氧空位的样品(H2-150)光催化还原CO2性能最差,但光热协同催化还原CO2的性能最佳.我们对其光电导值的衰减情况进行了分析,看到H2-150样品在CO2气氛、光热条件下,电导衰减加快.由于光电导的衰减是由电荷复合和电荷参与的表面反应共同决定的,为确定是哪一因素决定了电导的衰减,我们进一步测试了H2-150样品在N2气氛下的电导衰减情况.结果发现,H2-150样品在N2气氛、光热条件下电导衰减反而变慢.这表明,造成H2-150样品在CO2气氛、光热条件下的电导衰减加快是光热条件下CO2还原速率加快,也验证了H2-150具有较好的光热催化CO2活性.与H2-150样品不同的是,大量氧空位样品(H2-350)在CO2气氛、光热条件下电导衰减反而变慢,我们认为这是由于H2-350存在深能级缺陷,在热的作用下会将捕获的电子释放,因此延缓了光电导的衰减.但由于深能级电子的还原能力较弱,所以H2-350样品的光热CO2还原活性稍逊于H2-150.综上所述,在光热电导与光热催化相关的研究中,我们证实了在Ov-TiO2中被捕获的电子在热激发下可再次向导带弛豫,从而解释了Ov-TiO2优异的光热催化性能.因此,光热电导的研究在理解光热催化方面具有重要的前景.  相似文献   

17.
冷等离子体与催化协同反应是一个新的化学研究方向.本文总结了利用协同反应研究脱硝反应和几类化学反应取得的成果.包括NO分解反应、CH4选择性催化还原反应、NH3选择性催化还原反应、同时脱硝和脱除PM2.5过程、VOCs脱除、CO2分解以及丙烷二氧化碳重整等反应.协同作用使这些反应实现了低温或室温下的高活性.  相似文献   

18.
近几年,随着催化研究的逐渐深入,将两种或多种手段耦合,能够明显地改善催化性能,其中光热协同催化是当前新型催化技术研究的焦点.我们介绍了光热协同催化在能源合成领域的应用,尤其在光热催化CO_2转化、污染物降解、制氢和费托合成等反应.研究结果表明,两者的有效结合可以超越单独热催化或光催化所能达到的效果,在某些反应中能够明显提高产物的收率,改善目标产物的选择性以及降低反应的温度.最后还展望了光热协同催化发展的前景,以及目前仍然面临反应机理尚不明确和合适催化剂的筛选等问题.  相似文献   

19.
张飞飏  张宇  赵震  刘诗鑫 《化学通报》2022,85(6):668-676
利用低温等离子体的非热力学平衡特性,在较低温度下将氧气分子转化为活性氧物种,从而将炭烟氧化消除,其炭烟消除速率和CO2选择性等受等离子体放电结构、能量密度、反应气氛和催化剂的影响。本文对低温等离子体氧化消除炭烟的研究进展进行了总结,探讨反应器结构、能量密度、气相组成及催化剂对低温等离子体催化消除炭烟性能的影响规律,总结低温等离子体与催化剂协同催化机理的研究进展,分析低温等离子体与催化剂协同催化消除炭烟的主要挑战和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号