首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
稀土红色荧光粉SrZnO2∶Eu3+的发光性能   总被引:4,自引:0,他引:4  
A series of novel luminescent materials, SrZnO2∶M (M=Eu3+, or Eu3+ + Li+) have been synthesized by high-temperature solid-state reaction. The structure and luminescence properties of SrZnO2∶Eu3+ phosphor were studied through XRD, photoluminescence and Raman spectroscopy. The excitation spectra show a broad intense band and a number of small peaks corresponding to the inner 4f-shell excitations of Eu3+ (the strongest one is at 395 nm for 7F0-5L6). After SrZnO2∶Eu3+ phosphor was co-doped with Li+ ions, its charge transfer band extended to longer wavelengths. This resulted in increase of luminescent quantum efficiency of the sample. SrZnO2∶Eu3+,Li+ phosphor can be efficiently excited by longer UV. From the fluorescence spectrum of SrZnO2∶Eu3+ phosphor, apart from transition emissions of 5D07FJ (J=0~4), the transition emissions from 5D17FJ (J=0~2) have been observed. For the SrZnO2∶Eu3+ phosphor, under excitation of UV, the dominant emission is at about 612 nm, due to the 5D07F2 hypersensitive transition. The incorporation of Li+ ions greatly enhanced the luminescence intensity and made emission peak from 5D07F2 transition red-shifted.  相似文献   

2.
陈洁  柴飞  尹涛  张汉焱  符史流 《无机化学学报》2007,23(10):1801-1804
A Eu3+-doped Ca2PbO4 with one-dimensional structure was prepared with a solid-state reaction method and its characteristics were investigated. The XRD results show that the substitution of Ca2+ by Eu3+ has no influence on the structure of Ca2PbO4. Under the excitation of ultraviolet light, the Ca2PbO4:Eu3+ phosphor exhibits strong red emission at about 618 nm which is assigned to the 5D0- 7F2 electric-dipole transition. The compounds Sr2CeO4 and Ca2SnO4 have the same crystal symmetry as that of Ca2PbO4 and it is found that the emission intensity of Ca2PbO4∶Eu3+ is higher than that of Sr2CeO4∶Eu3+ and lower than that of Ca2SnO4∶Eu3+. The excitation spectrum of Ca2PbO4∶Eu3+ appears to be a broad band with two peaks at about 289 nm and 340 nm. The former peak is attributed to the Eu3+-O2- charge transfer transition, while the latter one may be related to the absorption of Ca2PbO4 host or its crystal defects.  相似文献   

3.
Eu3+掺杂SiO2-B2O3-NaF玻璃的制备及发光性质   总被引:1,自引:0,他引:1  
The Eu-doped SiO2-B2O3-NaF glass was prepared by sol-gel process, using tetraethoxy Silicane, boric acid and sodium fluoride as starting materials, 0.10 mol·L-1 EuCl3 solution as the dopant. The luminescent properties of Eu3+ doped SiO2-B2O3-NaF phosphors were investigated. The phosphors showed prominent luminescence in pink, the strong emission of Eu3+ comes from electronic transition of 5D0- 7F1(591 nm)and 5D0- 7F2(615 nm),which derived from two transition modes of magnetic-dipole and electric-dipole .The peak intensity of 591nm in SiO2-B2O3-NaF matrix is much stronger than it in the other matrixes, it means that SiO2-B2O3-NaF has sensitization on the transition of 5D0- 7F1 (Eu3+). If there are broad bonds in the range of 275~380 nm in the excitation spectrum of Eu3+ -doped SiO2-B2O3-NaF glass, the emission peak intensity should be intensified. It is because the electron migration CT band of O2--Eu3+. For all Eu3+ concentrations used, the investigation found that when the mass of fraction got to 29.19×10-3, the luminescence intensity reached the summit. And there is a phenomenon of concentration quenching. Investigation with the same concentration of Eu3+ at different annealed temperature, we found that the sample annealed at 400 ℃, the luminescence intensity achieved its maximum value, and Eu3+ in this matrix had a phenomenon of temperature quenching. The structural characterization of these luminescent materials was carried by used XRD and TEM. The result showed that the phosphor was in amorphous phase.  相似文献   

4.
The luminescent properties of Pr3+-doped LaB3O6, SrAl12O19, SrB4O7 and NaYF4 in the vaccum ultraviol-et (VUV) range at different temperatures were investigated under the excitation of high-energetic synchrotron radiation. For Pr3+ ions in LaB3O6, SrAl12O19 and SrB4O7, only the parity-forbidden 1S0→4f2 transitions were observ-ed in the emission spectra at relatively low temperature; but the parity-allowed 4f5d→4f2 transitions appeared simultaneously when the temperature was high enough. And the intensity of broad 4f5d→4f2 emission increased relative to the intensity of 1S0→4f2 emissions with increasing temperature. Then the thermal equilibrium model of energy levels was employed to the lowest 4f5d state and 1S0 state of Pr3+ in the three hosts. The calculated curves were in good agreement with the experimental values, indicating the occurrence of the thermal excitation from 1S0 state to 4f5d states at high temperatures when the lowest 4f5d state lies higher than 1S0 state and the photon energy is high enough.  相似文献   

5.
The spheric La2O3∶Eu nanocrystals were prepared using NH3·H2O-NH4HCO3 mixture as precipitant. The material was characterized by FTIR, XRD and TEM techniques. The luminescence properties of Eu3+ in spheric La2O3 were measured by three dimension spectra, emission and excitation spectra. The results indicate that the La2O3∶Eu nanocrystals are in hexagonal phase by annealing at 800 ℃, the crystal size is about 30 nm. The maximum emission and excitation wavelength were determined by three dimensional spectroscopy to be at 591 nm and 394 nm, respectively. In emission spectrum the band at 591 nm and 612 nm are corresponding to 5D0-7F1 and 5D0-7F2 transition of Eu3+ ions. With increasing in annealing temperature the differences of intensity of the two transitions are increased. This phenomenon shows that the luminescence intensity of La2O3∶Eu nanocrystals can be tuned by changing annealing temperature.  相似文献   

6.
Pr3+掺杂的LaF3纳米微晶/氟氧化物玻璃陶瓷的VUV光谱   总被引:1,自引:0,他引:1  
The vacuum ultraviolet (VUV) spectroscopic properties of praseodymium (Pr3+, 1at%) doped LaF3 nanocrystals/glass at room temperature and 20 K are reported. Two types of Pr3+ ions, those in LaF3 nanocrystals and those in the glass host, were excited to 4f 5d band by VUV using synchrotron radiation as an excitation source, and emissions of 1S01D2 (336 nm), 1S01I6 (397 nm ) of Pr3+ in the nanocrystals and emissions of 4f 5d3HJ, 3FJ of Pr3+ in the glass appeared at the same time. But unlike in the bulk sample crystals, emission of 3P03HJ, 3FJ as the second step of the quantum splitting (QS) of Pr3+ in the LaF3 nanocrystals was not observed at room temperature, which could be explained that Pr3+ ions in the glass absorbed the energy of 3P03H4 of Pr3+ in the nanocrystals. Two types of excitation spectra monitoring different emissions were also measured, so it could be observed that the lowest energy of 4f 5d band of Pr3+ in the nanocrystals was about 53 500 cm-1 (186 nm) and in the glass about 33 800 cm-1(295 nm), respectively. These emission and excitation spectra were contrasted to those of bulk sample crystals LaF3∶Pr3+.  相似文献   

7.
The spherical Y2O3∶Eu3+ luminescent particles with size of 0.5~3 μm and smooth surface were synthesized by hydrothermal method. The resulted Y2O3∶Eu3+ precursors and the calcined particles were characterized by differential thermal analysis (DTA) and thermogravimetric (TG) analysis, X-ray diffraction (XRD), Fourier-transform IR spectroscopy (FTIR), scanning electron microscopy (SEM) and photoluminescence spectra (PL). FTIR, TG-DTA, XRD measurements show that the precursors are crystal with hydroxyl and carbonate group, and the pure cubic yttria is obtained after annealing above 700 ℃. The SEM images indicate that the Y2O3∶Eu3+ particles are in spherical shape and with smooth surface. PL analysis shows that the particles present characteristic red emission of Eu3+.  相似文献   

8.
The barium titano-silicate phosphors doped with Eu3+ were synthesized by high temperature solid state reaction. The structures of as-synthesized samples were characterized by powder XRD. The maximum peaks of emission spectra of Ba2TiSi2O8 and Ba2TiSi2O8∶Eu3+ were respectively located at 450 and 618 nm, coming from the transitions of charge-transfer bands of Ti4+-O2- and forced electric-dipole transition 5D0-7F2 of Eu3+. The luminous mechanisms of Ba2TiSi2O8 and Ba2TiSi2O8∶Eu3+ were suggested. The effects of concentration of Eu3+ on the luminous performance of Ba2TiSi2O8∶Eu3+ were also studied and the results showed that the optimum concentration of Eu3+ was 0.12 mol per mole of matrix.  相似文献   

9.
A phosphor, Ba0.97Al2Si2O8∶Eu2+, was synthesized by high temperature solid-phase method at different temperatures. The samples were characterized by TG/DTA, XRD and fluorescence spectroscopy. The results show that the main phase for host of these luminescence materials is barium feldspar BaAl2Si2O8∶Eu2+ and there is a transition from hexagonal crystal system to monoclinic crystal system in the process of the sintering of barium feldspar. The luminescent phenomen of barium feldspar with hexagonal structure can not be observed under the excitation of ultraviolet lamp of 365 nm while the barium feldspar with monoclinic structure has excellent luminescence properties. The excitation spectra of all these samples show broad band spectra ranging from 250~390 nm with peak at λex of 357 nm,which indicates that these samples can be effectively excited by near ultraviolet ; the emission spectra range from 380~600 nm with peak at λem of 433 nm. The luminescent intensity increases then decreases with the concentration of doping Eu2+ ions. When the concentration of dopants is 2.5mol%, the luminescent intensity reaches the maximum value. When the concentration of Eu2+ ions changes from 0.5mol% to 2.5mol%, the emission peak has a red shift from 427 nm to 440 nm.  相似文献   

10.
Silicate orange yellow phosphor used in white-light LED was prepared by microwave method. The structure and optical properties of phosphor were studied. Sr3SiO5∶Eu2+ phosphor synthesized by microwave method is tetragonal structure of Sr3SiO5 with uniform particle distribution. Luminescence spectrum is a broad band spectrum peaking at 575 nm. The peak of excitation is at 532 nm and phosphor can be excited by blue LED. The warm white light was obtained combined phosphor and blue LED. The CIE chromaticity coordinates and correlated color temperature of white light is (x=0.394, y=0.341) and 3 239 K respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号