首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
受钼精矿基体中铜、钼元素的干扰,电感耦合等离子体原子发射光谱法(ICP-OES)无法直接用于磷(213.617nm)的检测。考察了钼和铜谱线对磷(213.617nm)测定的影响,应用ICP-OES多谱拟合(MSF)法消除铜(213.599nm)、钼(213.606nm)的光谱干扰,建立了适合钼精矿中磷的检测方法。对方法的准确度和精密度进行实验,钼精矿中磷的加标回收率为96.2%~103.7%,RSD为2.6%~6.0%。实验证明,多谱拟合(MSF)电感耦合等离子体原子发射光谱法测定钼精矿中磷的方法是一种较为理想的分析方法,适合钼精矿中磷的测量范围为0.0010%~1%。  相似文献   

2.
受钼精矿基体中铜、钼元素的干扰,ICP-OES法无法直接用于磷(213.617nm)的检测。本文考察了钼和铜谱线对磷(213.617nm)测定的影响,应用ICP-OES 多谱拟合(MSF)法消除铜(213.599nm)、钼(213.606nm)的光谱干扰,建立了适合钼精矿中磷的检测方法。对方法的准确度和精密度进行试验,钼精矿中磷的加标回收率为96.2%~103.7%,RSD为2.60%~6.02%。试验证明,本方法是一种较为理想的分析方法,适合钼精矿中磷的测量范围为0.0010%~1%。  相似文献   

3.
采用HCl-HNO3混和酸溶解金精矿样品,用电感耦合等离子体发射光谱(ICP-OES)法测定。在选定的操作条件下,砷的检出限0.018μg/mL。相对标准偏差(n=11),RSD2%,加标回收率在98.2%~103%。用来测定金精矿中砷元素的含量,操作简单易行,能够满足日常生产需要。  相似文献   

4.
采用硝酸-盐酸-氢氟酸-高氯酸溶样,优化仪器测定条件及消除干扰元素的条件实验等,建立了电感耦合等离子体发射光谱(ICP-OES)法测定铅精矿中砷、锑、铋、铜、锌、镁、铝、铁、镉的方法。其测定范围ω(As):0.02%~1.50%;ω(Sb):0.01%~10.00%;ω(Bi):0.03%~5.00%;ω(Cu):0.50%~10.00%;ω(Zn):2.00%~10.00%;ω(Mg):0.30%~2.00%;ω(Al):0.50%~3.00%;ω(Fe):5.00%~12.00%;ω(Cd):0.030%~0.20%。经加标回收实验,各元素的加标回收率为90%~104%(n=3)。方法准确、快速、可靠,适用于铅精矿中砷、锑、铋、铜、锌、镁、铝、铁、镉量的同时测定。  相似文献   

5.
电感耦合等离子体发射光谱(ICP-OES)法越来越多地应用于各类分析检测中。与传统方法比较,ICP-OES法测定非金属元素具有一定的优势。综述了ICP-OES法测定非金属元素硫、磷、硼、硅、硒、砷、碲、碳和卤素的最新应用进展,提出了ICP-OES法测定非金属元素存在的问题及发展方向。  相似文献   

6.
采用电感耦合等离子体发射光谱法(ICP-OES)测定湿法精制磷酸中微量元素镁、钙、铁、砷含量,对仪器参数及元素谱线等相关参数进行实验和优化,方法具有线性范围宽、精密度高、结果准确、分析速度快等特点。相对标准偏差RSD为0.26%~0.82%,加标回收率为95.75%~102.8%,检出限为0.0021~0.0408mg/L,适用于湿法精制磷酸中镁、钙、铁、砷的测定。  相似文献   

7.
采用钼蓝比色法测定水中As(Ⅲ)和As(Ⅴ)的含量,实验优化了测定As(Ⅲ)和As(Ⅴ)的条件。结果表明,显色温度在24~28℃范围,配合物在40min后吸光度达到最大;显色温度高于30℃时,还原剂不稳定导致配合物吸光度一直增大;增大抗坏血酸的量可以消除过量的氧化剂对配合物显色的影响,过量的还原剂对配合物显色无影响;砷的检测在5~100μg/L范围线性良好,线性相关系数为0.9989;检出限为5μg/L;相对标准偏差为2.1%~5.9%。采用该方法测定实际水样中无机砷的含量,砷的加标回收率在98.2%~104.5%之间。  相似文献   

8.
氢化物发生-原子吸收光谱法测定中药中砷(Ⅲ)和砷(Ⅴ)   总被引:15,自引:1,他引:14  
本文用氢化物发生(HG)-原子吸收光谱法(AAS)测定中药中的三价砷及五价砷。在pH5.6~6.0时,砷(Ⅲ)与硼氢化钾作用生成气态氢化物,而砷(Ⅴ)不发生反应;在2mol/L盐酸溶液中,用硫脲和抗坏血酸还原砷(Ⅴ)为砷(Ⅲ),同法测总砷,用差减法求得砷(Ⅴ)含量。方法检出限为7.5μg/L,RSD为1.45%。回收率为89.2%~114.6%。利用本方法成功地对六种中成药中的砷进行了形态分析。  相似文献   

9.
建立了电感耦合等离子体发射光谱(ICP-OES)法测定钼中Co、Cu、Fe、Mg、Mn、W、Zr元素含量的方法。确定了溶样方法和分析谱线,采用基体匹配消除干扰。对方法精密度和准确度进行实验,实验结果表明,各元素的相对标准偏差均小于3%,加标回收率在81.0%~110%。所建方法快速、准确,适用于钼中多元素同时测定。  相似文献   

10.
钨锡矿石共生与伴生元素多,为克服常用的钨锡矿石中锡、钨、钼、铜、铅、锌、硫、砷等8种元素检测过程程序繁琐,效率低下问题,通过在刚玉坩埚中直接加入氢氟酸挥发掉样品中的二氧化硅,用过氧化钠熔融已除硅的样品,再以酒石酸+磷酸+盐酸提取,解决了碱熔酸化的样品溶液中硅胶的影响和钨、锡等元素的不稳定性问题,建立了电感耦合等离子体发射光谱(ICP-OES)法直接测定样品中的锡、钨、钼、铜、铅、锌、硫、砷的方法。系统研究了过氧化钠熔剂的用量对各元素的影响,考察了引入单一酒石酸的络合作用和酒石酸+磷酸的混酸对各元素的影响,结果表明,过氧化钠用量为1.0 g时样品可以完全分解;单一酒石酸的络合作用有限,钨含量高的样品容易发生沉淀,而酒石酸+磷酸的混酸可以使钨在溶液中长期稳定,而对其他元素没有影响。选用5个钨、锡矿石国家一级标准物质按照本方法进行处理,测定结果均在认定值的误差范围内;采用4个实际样品与标准方法进行比对实验,各元素检测结果无显著差异。各元素的光谱强度在0~200 μg/mL浓度范围内呈良好的线性关系,相关系数(r)均在0.999 9以上,方法检出限值为3.0μg/g~25.0 μg/g,相对标准偏差RSD(n=12)为0.33%~7.0%。方法测试过程操作简便,检测结果准确、可靠,在多元素大批量的样品检测中具有明显优势。  相似文献   

11.
应用电感耦合等离子体发射光谱法测定锌精矿中的铟,确定了最佳工作条件,选择了最佳分析谱线,并利用标准加入法和基体匹配法验证了方法的准确性。样品用氟化氢铵、盐酸、硝酸、高氯酸溶样,用盐酸定容。结果表明,电感耦合等离子体发射光谱法与萃取分离盐酸羟胺示波极谱法测定的铟含量结果一致。方法准确,快速,加标回收率为99.6%~101.7%,相对标准偏差为0.97%~2.1%。  相似文献   

12.
微波消解-ICP-OES测定钛渣中常量或微量杂质   总被引:1,自引:0,他引:1  
钛渣样品采取高压密闭微波加热方式以HF、HNO3进行消解,采用电感耦合等离子体原子发射光谱法(ICP-OES)直接同时测定常量、微量杂质铁、铅、砷、铬、铜、磷、锰、钒、镁、钙。考察了消解条件、基体钛以及共存元素之间的干扰影响、等离子体参数等测定条件,通过优选元素分析谱线、以及采用基体匹配与同步背景校正相结合的方式消除光谱干扰和基体效应。测定50、60、70、80、90等不同品位钛渣中杂质元素的结果表明:方法检测范围涵盖了0.005%~10.0%的钙、镁、铁,以及0.005%~2.0%的铅、砷、铬、铜、磷、锰、钒,校准曲线相关系数大于0.999 2;背景等效浓度0.002%~0.0015%,检测限0.0009~0.0038%;含量不小于1.0%的RSD低于0.677%,在0.010%~0.10%含量范围内RSD低于3.85%;回收率为90.0%~108.0%。以本法对70、80、90 3个高钛渣标准样品的定值分析结果与传统化学方法对照一致。  相似文献   

13.
采用硝酸、盐酸、氢氟酸、高氯酸分解样品,氢溴酸-盐酸挥发消除砷基体,优化仪器测定参数,选取最佳工作条件,建立了电感耦合等离子体原子发射光谱(ICP-AES)法测定铜砷滤饼中Pb、Fe、Bi元素的分析方法。其测定范围为:ω(Pb):0.12%~2.09%;ω(Fe):0.081%~2.10%;ω(Bi):1.20%~6.14%。各元素检出限为Pb:0.010μg/mL;Bi:0.006μg/mL;Fe:0.003μg/mL。加标回收率为95.5%~101.7%。该方法简便,准确,可靠,适用于铜砷滤饼中Pb、Fe、Bi元素的同时测定。  相似文献   

14.
采用电感耦合等离子体原子发射光谱法(ICP-OES)测定钼铁合金试样(钼质量分数为55%~65%)中的钼含量,单点校准获得了较好的线性.样品经酸化后微波消解处理,采用钇元素作为内标以减少仪器波动的影响,在波长202.030 nm的分析谱线处测得钼元素的最佳发射强度.检测结果显示微波消解的样品溶解时间可缩短为重量法的14%,检测结果的相对标准偏差为0.17%~0.22%,采用标准样品验证结果的准确度与重量法无显著差异,可以为ICP-OES法检测高含量组分提供参考.  相似文献   

15.
采用电感耦合等离子体发射光谱法(ICP-OES)测定富锂锰基正极材料中的钠、钾、铜、钙、铁、镁、锌、铝、硅等9种杂质元素,并对样品的前处理条件、仪器测试条件、分析谱线的选择以及基体干扰情况进行了讨论.方法的相对标准偏差为1.1%~5.1%,加标回收率为93.0%~104.0%.方法操作简便,精密度好,准确度高,可以为富锂锰基正极材料中微量杂质元素提供一种可靠的分析测定方法.  相似文献   

16.
建立了用硝酸、氢氟酸、磷酸溶解样品,电感耦合等离子体发射光谱法测定锗精矿中锗量的方法。试验选择209.426nm作为最优分析谱线,锗的检出限为0.006μg/mL,测定下限为0.020 μg/mL,在磷酸基体匹配的条件下测定,测定范围为1%-15%,与经典碘酸钾滴定法对比,数据一致,相对标准偏差<3%(n=11),加标回收率98%~101%,能够满足快速测定及批量处理锗精矿中1%-15%的锗含量的需求。  相似文献   

17.
电感耦合等离子体发射光谱法(ICP-OES)测定重金属时常面临干扰问题。为提高ICP-OES测定水泥熟料中铬的准确度,研究选取了Cr205.560、Cr267.716和Cr283.563三条谱线,根据水泥熟料中主量元素(铁、铝、钙和镁)含量,设计不同浓度单元素干扰试验,结果表明:铁对Cr283.563谱线测定有较大的正干扰,钙对三条谱线均有较大的负干扰,两者导致的相对误差(RE)均在±10%以上,其他一般为负干扰,RE在±10%以内。进一步线性回归分析发现,除铝外,其他干扰元素的干扰大小与浓度呈强线性相关性。通过多元素复合干扰试验发现干扰导致的RE约为-18%~11%,同单元素干扰加和结果比较,两者相差约为8%~10%。实际样品检测结果表明实际干扰同多元素复合干扰试验基本相同,Cr283.563谱线测定结果误差可能更小,三条谱线的实际样品加标回收率大致相当,约为80%,经回收率修正,Cr205.560和Cr267.716谱线结果满意,而Cr283.563谱线误差较大。以多元素复合干扰试验溶液作为基体,采用基体匹配法测定可基本消除干扰影响。以钙溶液作为基体的简化基体匹配法同样有效,但仅可选用Cr205.560和Cr267.716谱线。本研究从实际干扰问题出发,通过系统分析问题,找到干扰的原因,并据此提出消除干扰方法,提高了测定铬的准确度,也为检测人员解决相关干扰问题提供借鉴。  相似文献   

18.
采用电感耦合等离子体发射光谱法测定了铜渣精矿中砷、锑、铋、铅、锌、镁的量。其测定范围:ω(As):0.05%~0.45%,ω(Sb):0.07%~0.30%,ω(Bi):0.01%~0.20%,ω(Pb):1.00%~4.50%,ω(Zn):1.00%~4.50%,ω(Mg):0.10%~1.00%。经加标回收实验,各元素的加标回收率为92%~104%(n=3),相对标准偏差(RSD)小于5%(n=11)。方法准确快速可靠,适用于铜渣精矿中砷、锑、铋、铅、锌、镁量的同时测定.  相似文献   

19.
Donaldson EM 《Talanta》1977,24(2):105-110
A method for determining 0.0001-1% of arsenic in copper, nickel, molybdenum, lead and zinc concentrates is described. After sample decomposition, arsenic is separated from most of the matrix elements by co-precipitation with hydrous ferric oxide from an ammoniacal medium. Following reprecipitation of arsenic and iron, the precipitate is dissolved in approximately 2 M hydrochloric acid and the solution is evaporated to a small volume to remove water. Arsenic(V) is reduced to the tervalent state with iron(II) and separated from iron, lead and other co-precipitated elements by chloroform extraction of its xanthate from an 11M hydrochloric acid medium. After oxidation of arsenic(III) in the extract to arsenic(V) with bromine-carbon tetrachloride solution, it is back-extracted into water and determined by the molybdenum blue method. Small amounts of iron, copper and molybdenum, which are co-extracted as xanthates, and antimony, which is co-extracted to a slight extent as the chloro-complex under the proposed conditions, do not interfere. The proposed method is also applicable to copper-base alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号