首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption features of two peroxide macroinitiators (PMIs) with various functionalities from their semi-dilute solutions on the silica surface were thoroughly investigated in the present work. These investigations include the study of the adsorption kinetics of PMI in diverse solvents and a detailed examination of the adsorbed layer structure with the aid of ellipsometry, scanning force microscopy (SFM), and contact angle measurements. Rearrangements of PMI macromolecules at the solid surface are supposed to be the main reason for the appearance of extremes on the kinetic curves and, besides, have a more pronounceable effect on adsorption rate than their diffusion rate to the surface even at the initial stage of the process. Both island-like and densely packed structures of absorbed layers were revealed by combining contact angle measurements and SFM. Surprisingly, even in the case when saturation of the adsorbed layer is reached, PMI does not completely occupy the substrate surface which is at least particularly reachable for the wetting liquids. PMIs adsorbed at the solid surface are intended for the formation of tethered polymer "brushes" via the initiation of "grafting from" polymerization.  相似文献   

2.
Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.  相似文献   

3.
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.  相似文献   

4.
The behaviour of oils at aqueous interfaces is ubiquitous to many industrially and biologically relevant processes. In this review we consider modifications to the wetting properties of oils at the air/water, oil/water and solid/liquid interfaces in the presence of surfactants. First-order wetting transitions can be induced in a wide range of oils by varying the aqueous surfactant concentration, leading to the formation of mixed monolayers at the interface. In certain cases, these mixed monolayers display novel surface freezing behaviour, including the formation of unusual bilayer structures, which further modifies the properties of the interface. The effects of surfactant on line tension at the three-phase contact line and differences between the air/liquid and liquid/liquid interfaces are discussed.  相似文献   

5.
A film composed of a thermal-stripped, solvent-borne acrylic polymer is shown to completely arrest motion of the three-phase line for water as a result of ridge structure formation. This mechanism produces anomalous wetting behavior including the arbitrary selection of contact angles, formation of quasi-periodic ridge structures on surfaces, and requirement of stick and break motion for wetting line advancement, a novel mechanism reported here. The ridges are retained by the polymer subsequent to wetting, which are 2 scales larger in height than those described previously. This allows for their characterization, which shows significant detail including the hierarchical apex structure where a cutoff area is used in theoretical treatment to avoid a singularity. Results of Wilhelmy plate experiments show a spatial connection between quasi-periodic variation in force-displacement curves and the wetting ridges on plate. These results are consistent with the dominance of the viscoelastic properties of the substrate in determining wetting behavior.  相似文献   

6.
Microstructured polymer surfaces, including conducting and insulating polymers, have been prepared to achieve electrochemical control of the surface energy and topography. The reported surface switches include pillar- and mesh-like surface patterns of polypyrrole (PPy), poly(3,4-ethylene-dioxythiophene) (PEDOT), and photoresists. The structures have been evaluated by contact angle measurements and optical and scanning electron microscopy to determine the surfaces characteristics. These microstructured polymer surface switches can be electrochemically modified from dewetting to wetting conditions, with a maximum associated change of the water contact angle from 129 degrees to 44 degrees . This contact angle switching was observed for samples in which dynamic control of the surface topography and surface tension was coupled. Control of topography was achieved with a dynamic height-switching range of more than 3 mum. In addition, dynamic control of anisotropic wetting is reported. Our experiments were carried out under conditions that are suitable for a biointerface, implying potential application in biotechnology and cell science. In particular, switching of the energy, chemistry, and topography of the surface, along with their associated orientation, are interesting features for dynamic (electronic) control of the seeding and proliferation for living cells. The technology reported promises for electronically controlled cell-growth within Petri dishes, well plates, and other cell-hosting tools.  相似文献   

7.
Silver dendrites have received immense attention because of their fascinating hierarchical structures and unique properties. Depending on the methods of synthesis, Ag dendrites can be implemented in numerous fields. This review summarizes a variety of Ag dendrites preparation techniques. The involved growth mechanisms are investigated in order to control the formation progress more effectively. With regard to the applications, this article mainly focuses on surface enhanced Raman spectroscopy, catalysis, superhydrophobic surface and surface enhanced fluorescence by using Ag dendrites. The remaining issues of the preparation methods, which impede the practical applications of Ag dendrites, are pointed out to enlighten their future research.  相似文献   

8.
Wetting and surface forces   总被引:1,自引:0,他引:1  
In this review we discuss the fundamental role of surface forces, with a particular emphasis on the effect of the disjoining pressure, in establishing the wetting regime in the three phase systems with both plane and curved geometry. The special attention is given to the conditions of the formation of wetting/adsorption liquid films on the surface of poorly wetted substrate and the possibility of their thermodynamic equilibrium with bulk liquid. The calculations of contact angles on the basis of the isotherms of disjoining pressure and the difference in wettability of flat and highly curved surfaces are discussed. Mechanisms of wetting hysteresis, related to the action of surface forces, are considered.  相似文献   

9.
Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.  相似文献   

10.
We report on the reorganization and bundling of titanium oxide nanostructured layers, induced by wetting with different solvents and subsequent drying. TiO(2) layers are deposited by pulsed laser deposition and are characterized by vertically oriented, columnar-like structures resulting from assembling of nanosized particles; capillary forces acting during evaporation induce bundling of these structures and lead to a micrometer-size patterning with statistically uniform islands separated by channels. The resulting surface is characterized by a hierarchical, multiscale morphology over the nanometer-micrometer length range. The structural features of the pattern, i.e., characteristic length, island size, and channel width, are shown to depend on properties of the liquid (i.e., surface tension) and thickness and density of the TiO(2) layers. The studied phenomenon permits the controlled production of multiscale hierarchically patterned surfaces of nanostructured TiO(2) with large porosity and large surface area, characterized by superhydrophilic wetting behavior without need for UV irradiation.  相似文献   

11.
Molecular dynamics simulations in conjunction with MEAM potential models have been used to study the melting and freezing behavior and structural properties of both supported and unsupported Au nanoclusters within a size range of 2 to 5 nm. In contrast to results from previous simulations regarding the melting of free Au nanoclusters, we observed a structural transformation from the initial FCC configuration to an icosahedral structure at elevated temperatures followed by a transition to a quasimolten state in the vicinity of the melting point. During the freezing of Au liquid clusters, the quasimolten state reappeared in the vicinity of the freezing point, playing the role of a transitional region between the liquid and solid phases. In essence, the melting and freezing processes involved the same structural changes which may suggest that the formation of icosahedral structures at high temperatures is intrinsic to the thermodynamics of the clusters, rather than reflecting a kinetic phenomenon. When Au nanoclusters were deposited on a silica surface, they transformed into icosahedral structures at high temperatures, slightly deformed due to stress arising from the Au-silica interface. Unlike free Au nanoclusters, an icosahedral solid-liquid coexistence state was found in the vicinity of the melting point, where the cluster consisted of coexisting solid and liquid fractions but retained an icosahedral shape at all times. These results demonstrated that the structural stability in the structures of small Au nanoclusters can be enhanced through interaction with the substrate. Supported Au nanoclusters demonstrated a structural transformation from decahedral to icosahedral motifs during Au island growth, in contrast to the predictions of the minimum-energy growth sequence: icosahedral structures appear first at very small cluster sizes, followed by decahedral structures, and finally FCC structures recovered at very large cluster sizes. The simulations also showed that island shapes are strongly influenced by the substrate, more specifically, the structural characteristic of a Au island is not only a function of size, but also depends on the contact area with the surface, which is controlled by the wetting of the cluster to the substrate.  相似文献   

12.
黄建业  王峰会  赵翔  张凯 《物理化学学报》2013,29(11):2459-2464
超疏水材料具有自清洁、防水、低粘附等特性,因此具有重要的应用价值.维持超疏水状态的稳定性,避免水侵入到材料表面微结构内部是实现这些特性的基础.本文在水下超疏水界面全反射的基础上,结合真空技术,提出了一种连续、直观的测试方法来测试超疏水状态的稳定性,并研究了Cassie-Wenzel润湿过渡行为及其临界压力.实验结果表明:对于典型的柱状微凸起结构,Cassie-Wenzel润湿转变过程可分为四个阶段:非润湿阶段、主要润湿阶段、强化润湿阶段和完全润湿阶段.主要润湿过程中的临界压力与理论值一致;强化润湿阶段需在较高的压力作用下进行,从而驱动固/液系统过渡到完全润湿阶段.与柱状结构相比,荷叶的乳突状微结构在润湿过程并不存在非润湿阶段,这是因为二者对外部压力的抵抗方式不同所致:柱状微结构通过增大柱子间悬挂液面的曲率来与外部压力建立平衡,而乳突状微结构则通过润湿过程中三相接触线密度的增加来强化毛细作用力,从而与外部压力建立平衡.  相似文献   

13.
SAMs based on a novel dendron-thiol system, which maintain the alkanethiols' active site, but with the -SH group connected to independently variable groups by a dendron-linker, showed a controllable surface pattern and wetting properties. The precisely tailored structure of dendron-thiols with locally controlled hydrophobic and hydrophilic peripheries allows the formation of designed surface structures on a gold surface, e.g. nano-stripes, honeycomb and homogeneous structures.  相似文献   

14.
The goal of this work is to study via molecular simulations the wetting kinetics of a rough surface by an oily fluid. We use forward flux sampling to compute the wetting transition rate and elucidate the transition mechanism of a small droplet on a surface of nails. The nails provide the re-entrant geometry necessary to keep the droplet in the nonwetted, composite state. The effects of nail height, droplet size, and surface chemistry are investigated. Because the droplet must touch the bottom surface to transition, increasing the nail height is an effective way to increase the barrier to wetting for both phobic and slightly philic drops, although as the fluid becomes very philic, chemistry dominates and the effect of nail height disappears. Generally, smaller drops transition more easily. Overall, our results suggest that nonwettability could be practically enhanced by promoting the "kinetic" trapping of the system in the nonwetted state.  相似文献   

15.
We have studied the surface coverage dependence of the co-adsorption of D and D(2)O on the Ni(111) surface under UHV conditions. We use detailed temperature-programmed desorption studies and high resolution electron energy loss spectroscopy to show how pre-covering the surface with various amounts of D affects adsorption and desorption of D(2)O. Our results show that the effects of co-adsorption are strongly dependent on D-coverage. In the deuterium pre-coverage range of 0-0.3 ML, adsorption of deuterium leaves a fraction of the available surface area bare for D(2)O adsorption, which shows no significant changes compared to adsorption on the bare surface. Our data indicate phase segregation of hydrogen and water into islands. At low post-coverages, D(2)O forms a two-phase system on the remaining bare surface that shows zero-order desorption kinetics. This two phase system likely consists of a 2-D solid phase of extended islands of hexamer rings and a 2-D water gas phase. Increasing the water post-dose leads at first to 'freezing' of the 2-D gas and is followed by formation of ordered, multilayered water islands in-between the deuterium islands. For deuterium pre-coverages between 0.3 and 0.5 ML, our data may be interpreted that the water hexamer ring structure, (D(2)O)(6), required for the formation of an ordered multilayer, does not form anymore. Instead, more disordered linear and branched chains of water molecules grow in-between the extended, hydrophobic deuterium islands. These deuterium islands have a D-atom density in agreement with a (2x2)-2D structure. The disordered water structures adsorbed in-between form nucleation sites for growth of 3-D water structures. Loss of regular lateral hydrogen bonding and weakened interaction with the substrate reduces the binding energy of water significantly in this regime and results in lowering of the desorption temperature. At deuterium pre-coverages greater than 0.5 ML, the saturated (2x2)-2D structure mixes with (1x1)-1D patches. The mixed structures are also hydrophobic. On such surfaces, submonolayer doses of water lead to formation of 3-D water structures well before wetting the entire hydrogen-covered surface.  相似文献   

16.
Surface-directed phase separation via a two-step quench process in asymmetry polymer mixtures is numerically investigated by coupling the Flory-Huggins-de Gennes equation with the Cahn-Hilliard-Cook equation. Two distinct situations, i.e., the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed, respectively. The morphology and evolution dynamics of the phase structure, especially the secondary domain structure, are analyzed. The wetting layer formation mechanisms during the two-step quench process are examined. The simulated results demonstrate that different secondary domain structures in these two situations can be induced by the second quench with deeper quench depth, which can be used to tailor phase morphology. It is also found that, in the second quench process, the evolution of the wetting layer thickness can cross over to a faster growth when the preferential component is the minority component. In this situation, the formation mechanism of the wetting layer will change and is eventually determined by the second quench depth. However, when the preferential component is the majority component, a deeper second quench depth corresponds to a slower growth of the wetting layer thickness. The chemical potential is calculated to explain the difference regarding the growth dynamics of the wetting layer thickness between these both situations.  相似文献   

17.
To understand why lotus leaf surfaces have a two-scale structure, we explore in this paper two stability mechanisms. One is the stability of the Cassie-Baxter wetting mode that generates the superhydrophobicity. A recent quantitative study (Zheng et al., Langmuir 2005, 21, 12207) showed that the larger the slenderness ratio of the surface structures was, the more stable the Cassie-Baxter wetting mode would be. On the other hand, it is well-known that more slender surface structures can only sustain lower critical water pressures for structure buckling, or Euler instability, while in the natural environments, the water pressure impacting on the lotus surface can reach a fairly high value (105 Pa in a heavy rain). Our analysis reveals that the two-scale structure of the lotus leaf surfaces is necessary for keeping both the structure and the superhydrophobicity stable. Furthermore, we find that the water-air interfacial tension makes the slender surface structure more instable and the two-scale structure a necessity.  相似文献   

18.
The localized surface plasmon resonance (LSPR) of plasmonic nanomaterials is highly dependent on their structures. Going beyond simple shape and size, further structural diversification demands the growth of non‐wetting domains. Now, two new dimensions of synthetic controls in Au‐on‐Au homometallic nanohybrids are presented: the number of the Au islands and the emerging shapes. By controlling the interfacial energy and growth kinetics, a series of Au‐on‐AuNR hybrid structures are successfully obtained, with the newly grown Au domains being sphere and branched wire (nanocoral). The structural variety allowed the LSPR to be fine‐tuned in full spectrum range, making them excellent candidates for plasmonic applications. The nanocorals exhibit black‐body absorption and outstanding photothermal conversion capability in NIR‐II window. In vitro and in vivo experiments verified them as excellent photothermal therapy and photoacoustic imaging agents.  相似文献   

19.
In the present work, we investigate wetting phenomena on freshly prepared nanostructured porous silicon (nPS) with tunable properties. Surface roughness and porosity of nPS can be tailored by controlling fabrication current density in the range 40-120 mA/cm(2). The length scale of the characteristic surface structures that compose nPS allows the application of thermodynamic wettability approaches. The high interaction energy between water and surface is determined by measuring water contact angle (WCA) hysteresis, which reveals Wenzel wetting regime. Moreover, the morphological analysis of the surfaces by atomic force microscopy allows predicting WCA from a semiempiric model adapted to this material.  相似文献   

20.
近年来 ,自组装膜的研究不断引起人们重视[1] .一方面 ,其兴趣可能源于纳米级器件的组装 ,如生物传感器等 [2 ] ;另一方面 ,它可作为研究摩擦学 [3]、生物膜模拟 [4 ]和微观浸润性的模型体系 [5] .树枝状分子的结构可在分子水平上精确控制 ,是很有潜力的纳米构筑基元 [6 ] .不同于常规的自组装膜构筑基元 ,树枝状分子的特殊结构使其在金属表面形成某些特殊的组装结构成为可能 .结合界面分子自组装技术和树枝状分子化学 ,国内外已有机构开展了树枝状硫醇的自组装膜的研究[7~ 9] .我们曾发现一种聚醚树枝状硫醇分子在金表面形成的自组装单层…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号