首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystalline structures and crystallization behaviors of iPP containing β nucleation agent TMB-5(iPP/TMB-5) were investigated by synchrotron radiation wide angel X-ray diffraction(SR-WAXD), differential scanning calorimeter(DSC) and polarized light microscope(PLM). It was found that α-crystallization lagged behind β-crystallization at normal temperatures, but the discrepancy reduced with increasing temperature. TMB-5 could not induce β-iPP when the nucleation agent is wrapped up with α-crystal that crystallized at high temperatures. The polymorphic composition of iPP/TMB-5 was susceptible to the introductory moment of shear. New crystallization process of β-nucleated iPP was proposed to understand the experimental phenomena which could not be explained by those reported in the literature. It was supposed that polymer crystallization initiated from mesophase, and the formations of iPP crystals involved the organization of helical conformation ordering within mesophase. It was proposed that the iPP melt contained mesophases with stereocomplex-type ordering of right-handed and left-handed helical chains which could be disturbed by shear or TMB-5, leading to different polymorphic structures.  相似文献   

2.
The influence of cyanuric acid(CA) as an efficient nucleating agent on the crystallization behavior and morphology of biodegradable poly(ε-caprolactone)(PCL) was extensively studied in this work with several techniques for the first time. The nonisothermal melt crystallization behavior and overall isothermal melt crystallization rate of PCL were significantly enhanced by only a small amount of CA. The addition of CA apparently improved the nonisothermal melt crystallization peak temperature, overall isothermal melt crystallization rate, and nucleation density of PCL spherulites, but did not modify the crystallization mechanism and crystal structure of PCL, indicating that CA was an efficient nucleating agent for the crystallization of PCL. The possible nucleation mechanism of CA on the crystallization of PCL was also discussed on the basis of their crystal structures.  相似文献   

3.
苏志强  陈晓农 《高分子科学》2014,32(9):1167-1175
β-nucleated isotactic polypropylene(iPP) fibers with diameters less than 5 μm were prepared through melt electrospinning. The effects of electrospinning process and rare earth β-nucleating agent(WBG) on the crystal structure of iPP fibers were investigated. The results indicate that the addition of WBG can improve the fluidity of iPP melt remarkably and help the formation of fine fibers with thinner diameter, while the electrostatic force applied on the iPP melt is not favorable for the formation of β-crystal in iPP fibers. In addition, the morphology and crystalline structure of WBG/iPP electrospun fibers depended on the content of WBG. Both the crystallinity and the percentage of β-crystal form of WBG/iPP electrospun fibers increase with the rise of the content of nucleating agent, which endows the prepared electrospun fibers excellent mechanical properties. The β-nucleated iPP electrospun fibrous membranes prepared in this study can be used for protective clothing material, filtration media, reinforcement for composites and tissue engineering scaffolds.  相似文献   

4.
The objectives of this paper are to understand the crystallization behavior of polypropylene(PP)composites with surface modified tetra-needle-shaped zinc oxide whisker(T-ZnOw).T-ZnOw was surface modified with different coupling agents,such as silane coupling agents(KH-550,KH-560)and titanate coupling agent(NDZ-105),in order to improve the compatibility between PP and T-ZnOw.DSC and POM were used to characterize the melt and crystallization behavior and the crystalline structures of the composites,respectively.The results show that the surface modified T-ZnOw acts as a nucleating agent of PP crystallization,depending on the coupling agent used for modification.KH-550 and KH-560 have more apparent role in improving the interfacial interaction than NDZ-105 and induce PP crystallization at higher temperature and with smaller spherulites size.The results also suggest that the crystallization behavior depends on not only the content of coupling agent,but also the content of the surface modified T-ZnOw used in the composites.  相似文献   

5.
A sample containing different regions with poly(ε-caprolactone)(PCL), oriented polyethylene (PE), and oriented isotactic polypropylene (iPP) films in contact with glass slide has been prepared to be observed in the same view field in an optical microscope and the crystallization of PCL in different regions during cooling from 80 °C down to room temperature at a rate of 1 °C·min^-1 was studied. The results showed that the crystallization of PCL started first at the PE surface and then at the iPP surface, while its bulk crystallization occured much later. This indicates that though both PE and iPP are active in nucleating PCL, the nucleation ability of PE is stronger than that of iPP. This was due to a better lattice matching between PCL and PE than that between PCL and iPP. Moreover, since lattice matching existed between every (hk0) lattice planes of both PCL and PE but only between the (100)PCL and (010)iPP lattice planes, the uniaxial orientation feature of the used PE and iPP films resulted in the existence of much more active nucleation sites of PCL on PE than on iPP. This led to the fact that the nucleation density of PCL at PE surface was so high that the crystallization of PCL at PE surface took place in a way like the film developing process with PCL microcrystallites happened everywhere with crystallization proceeding simultaneously. On the other hand, even though iPP also enhanced the nucleation density of PCL evidently, the crystallization of PCL at iPP surface included still a nucleation and crystal growth processes similar to that of its bulk crystallization.  相似文献   

6.
Poly(vinylidene fluoride) (PVDF) exhibits pronounced polymorphs.Its γ phase is attractive due to the electroactive properties.The γ-PVDF is however difficult to obtain under normal crystallization condition.In a previous work,we reported a simple melt-recrystallization approach for producing y-phase rich PVDF thin films through selective melting and subsequent recrystallization.We reported here another approach for promoting the αγ'phase transition to prepare γ-phase rich PVDF thin films.To this end,a stepwise crystallization and subsequent annealing process was used.The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition.It was found that crystallizing the PVDF melt first at 152 ℃ for4 h,then quenching to room temperature and finally annealing the sample at 160 ℃ for 100 h was the most efficient to produce γ-PVDF rich films.This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 ℃,which favors the formation of γ-PVDF crystals for triggering the αγ'phase transition.  相似文献   

7.
<正>A relatively high predetermined crystallization temperature(135℃) was chosen to grow well developed iPP spherulites,then the partial melting was carried out at a temperature of 165℃,where the preformed spherulites were seen to only decrease their size but not completely melted.The crystallization behavior of partially melted isotactic polypropylene (iPP) has been carefully examined by different scanning calorimetry(DSC) and polarized light microscopy(PLM).The experimental results show that at a special annealing temperature(165℃) the melting behavior of iPP includes two parts with different mechanism,one part is the melting of iPP spherulite outside,another is the partial lamellae perfection during longer annealing time in the unmelted spherulite.The conformational orders of the iPP melt decrease with the increase of the annealing temperature.  相似文献   

8.
李忠明 《高分子科学》2011,29(5):540-551
One-step reaction compatibilized microfibrillar reinforced iPP/PET blends(CMRB) were successfully prepared through a "slit extrusion-hot stretching-quenching" process.Crystallization behavior and morphology of CMRB were systematically investigated.Scanning electronic microscopy(SEM) observations showed blurry interface of compatibilized common blend(CCB).The crystallization behavior of neat iPP,CCB,microfibrillar reinforced iPP/PET blend(MRB) and CMRB was investigated by differential scanning calorimetry(DSC) and polarized optical microscopy(POM).The increase of crystallization temperature and crystallization rate during nonisothermal crystallization process indicated both PET particles and microfibrils could serve as nucleating agents and PET microfibrils exhibited higher heterogeneous nucleation ability,which were also vividly revealed by results of POM.Compared with MRB sample,CMRB sample has lower crystallization temperature due to existence of PET microfibrils with smaller aspect ratio and wider distribution.In addition, since in situ compatibilizer tends to stay in the interphase,it could also hinder the diffusion of iPP molecules to the surface of PET phase,leading to decrease of crystallization rate.Two-dimensional wide-angle X-ray diffraction(2D-WAXD) was preformed to characterize the crystalline structure of the samples by injection molding,and it was found that well-developed PET microfibrils contained in MRB sample promoted formation ofβ-phase of iPP.  相似文献   

9.
Effects of cooling rate and crystallization and melt temperatures on the melting curves of predomi-nately β-phase isotactic polypropylene (IPP) were investigated by using DSC instrument. Experimental re-sults indicate that the magnitude of βmelting endctherm increases with decreasing cooling rate and withincreasing crystallization temperature. The temperature of melt has no effect on the β-phase crystallizationof IPP below 300℃, but a further increase of the melt temperature will destroy the β-phase nuclei,then the β-phase crystals will not be produced upon cooling. The linear growth rates of α- and β-phasespherulites were determined as a function of temperature between 123 and 140℃. It was found that thegrowth rate of βspherulites is higher than that of αspherulites below 140℃. Studies of the kinetics ofβ-phase crystallization of IPP were also made using a DSC instrument. The results obtained do not fitthe usual Avrami equation. But it can be described by kinetic theory of imcomplete spher  相似文献   

10.
The crystallization and melting behavior of polymers is of theoretical importance. In this work, poly(butylene succinate)(PBS) was selected as an example to study such behavior at low supercooling via introduction of the extended-chain crystal(ECC) of the same polymer as nucleating agent. The crystallization of PBS with its ECC as nucleating agent in a wide temperature range(90–127 °C) and the following melting behavior were studied. It is revealed that the melting point(T_m, for T_c≥113 °C) and the annealing peak temperature(T_a, for T_c=90–100 °C) show similar asymptotic behavior. Both T_m and T_a approach to a value of ca. 3.3 °C higher than the corresponding T_c when the crystallization time tc approaches the starting point. That is to say, the Hoffman-Weeks plot is parallel to T_m=T_c line. The crystallization line became parallel to the melting line when PBS was crystallized at T_c higher than 102 °C. Based on these results, we propose that the parallel relationship and the intrinsic similarity between the T_a and the T_m observed at the two ends of the T_c range could be attributed to the metastable crystals formed at the beginning of crystallization.  相似文献   

11.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

12.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

13.
The crystallization behavior of polyethylene (PE) and polypropylene (PP), including the neat ones and the ones nucleated with the same nucleating agent (NA), was studied by DSC. It was found that the nucleating agent decelerated the PE nonisothermal crystallization process. NA did enhance the nucleating rates for both PE and PP, but the linear growth rate dominated the volumetric growth rate for PE, and the volumetric growth rate dominated the overall crystallization rate. That is why PE nucleated with NA had a slower overall crystallization rate than the neat one.  相似文献   

14.
The crystallization behavior of syndiotactic polystyrene (sPS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory.On the basis of the differential scanning calorimetric results,it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness,which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization.Further temperature dependent small-angle X-ray scattering (SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition,involving three different regimes:lamellae stable region (25-90 ℃),melt-recrystallization region (90-185 ℃) and pre-phase transition region (185-195 ℃).As a result,recrystallization line,equilibrium recrystallization line and melting line were developed for the sPS γform crystallization process.Since the melt of γform involved a γto-α/β form phase transition,the melting line was also denoted as the phase transition line in this special case.Therefore,the equilibrium crystallization temperature and melting (phase transition)temperatures were determined at around 390 and 220 ℃ on the basis of the thermodynamic phase diagram of the sPS γform.  相似文献   

15.
王柯  傅强 《高分子科学》2011,29(6):732-740
The effect of clay on the nucleating behavior of 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol(DMDBS) in cryatallization of isotactic polypropylene(iPP) was investigated by means of differential scanning calorimetry(DSC), dynamic rheology and polarized light microscopy(PLM).It is interesting to note that the incorporation of layered clay nanoparticles into DMDBS-nucleated iPP may induce a synergetic nucleation effect while the DMDBS content is below 0.1 wt%,otherwise it restricts the crystallization rate prominently as the DMDBS content increases up to 0.3 wt%,which has exceeded the content threshold to yield a nucleating agent(NA) network.As shown by dynamic rheological investigations, the clay nanoparticles demonstrate an obstructive effect of disturbing the consistency of DMDBS fibrils network.Moreover, to further demonstrate the importance of NA network formation in the crystallization of iPP,we used another NA named HPN-20e,which can not form network structure at all over the concentration studied,for comparison.In this case,the nucleated-crystallization rate is independent on the addition of clay nanoparticles,as the nucleating mechanism is an individual nuclei manner without NA network forming.  相似文献   

16.
In the study on Ca-Mg silicate crystalline glazes, we found some disequilibrated crystallization phenomena,such as non-crystallographic small angle forking and spheroidal growth, parasitism and wedging-form of crystals, dendritic growth, secondary nucleation, etc. Those phenomena possibly resulted from two factors:(1) partial temperature gradient, which is caused by heat asymmetry in the electrical resistance furnace,when crystals crystalize from silicate melt; (2) constitutional supercooling near the surface of crystals. The disparity of disequilibrated crystallization phenomena in different main crystalline phases causes various morphological features of the crystal aggregates. At the same time, disequilibrated crystallization causes great stress retained in the crystals, which results in cracks in glazes when the temperature drops. According to the results, the authors analyzed those phenomena and displayed correlative figures and data.  相似文献   

17.
The influence of Ultrafine Full-Vulcanized Acrylate Powdered Rubber(UFAPR) on the isothermal crys-tallization kinetics and nonisothermal crystallization behavior of PA8 has been studied by means of DSC. The results show that with the introduction of a small amount of UFAPR, the crystallization rate of PA8 can be increased obviously, and the crystallization temperature range can be augmented and the crystallite size distri-bution of the crystal can be narrowed down. The change of free energy perpendicular to the crystal nucleus, which has been calculated according to the Hoffman theory, is consistent with the result of Avrami′s equa-tion. The unit surface free energy of the radial-developing crystal spherulite decreases while the crystalliza-tion rate of PA8 increases with the introduction of UFAPR. Meanwhile, it is shown by means of the polariz-ing microscope(PLM) that the crystal size drops down and the number of the crystal grains augments with the addition of UFAPR, which shows that UFAPR can function as a nucleating agent.  相似文献   

18.
The effect of isobutylene-isoprene rubber (IIR) on the crystallizing behavior of isotactic polypropylene (IPP) as well as the morphology of the blends in relation with its properties have been studied by DSC, WAXD, polarized light microscope, SEM and mechanical properties test. The experimental results show that IIR has slight influence on melting point, crystallinity, crystallization rate of IPP. It seems certain that IIR has not entered into IPP phase in melt state. IIR has retarding action on the growth of IPP crystal and is an effective nucleating agent of IPP spherulites. The impact strength of the blend increases rapidly with IIR content more than 30 parts; the tensile strength of the blend, however, decreases as IIR content increases. The temperature and time of alter heat-treatment also have great influence on the impact strength of the blend. The impact strength of IPP/IIR (100/20) heat-treated at about 130℃for 2h is 5 times as high as that of the untreated blend.  相似文献   

19.
In our current work, the effect of the shear temperature on the growth of β-crystal in isotactic polypropylene(iPP) with β-nucleating agent is investigated by means of in situ two-dimensional wide-angle X-ray diffraction(2 D-WAXD). At low shear temperatures, the formed shear-induced oriented precursors are hard to relax back to random coiled state due to the weak mobility of molecular chains. Therefore, plenty of oriented α-crystals are induced by shear-induced oriented precursors, while β-crystal is greatly depressed. As the shear temperature increases, oriented β-crystal gradually increases along with the decrease of α-crystal. It is deduced that the shear temperature at which the content of β-crystal increases to the(maximum) value found in quiescent crystallization is almost the same as that at which the accelerating effect of flow on crystallization kinetics is completely erased. Our work manifests its significance in regulating β-crystal and thus in the structure and property manipulation of i PP.  相似文献   

20.
王勇 《高分子科学》2012,30(2):199-208
The microstructure evolution of isotactic polypropylene(iPP) during annealing is reported.A few amount of poly(ethylene oxide)(PEO) which exhibits much lower melt temperature compared with /PP was introduced into /PP in this work.The crystalline structure of /PP was detected using differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WAXD),and the relaxation of /PP was characterized using dynamic mechanical analysis(DMA).The variation of PEO morphology was investigated by scanning electron microscopy(SEM).The results show that the crystallization, including the primary crystallization and second crystallization during annealing,as well as the relaxation of /PP matrix is promoted with the presence of PEO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号