首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(vinylidene fluoride)(PVDF) exhibits pronounced polymorphs. Its γ phase is attractive due to the electroactive properties. The γ-PVDF is however difficult to obtain under normal crystallization condition. In a previous work, we reported a simple melt-recrystallization approach for producing γ-phase rich PVDF thin films through selective melting and subsequent recrystallization. We reported here another approach for promoting the αγ′ phase transition to prepare γ-phase rich PVDF thin films. To this end, a stepwise crystallization and subsequent annealing process was used. The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition. It was found that crystallizing the PVDF melt first at 152 °C for 4 h, then quenching to room temperature and finally annealing the sample at 160 °C for 100 h was the most efficient to produce γ-PVDF rich films. This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 °C, which favors the formation of γ-PVDF crystals for triggering the αγ′ phase transition.  相似文献   

2.
王海军 《高分子科学》2015,33(2):349-361
The miscibility, isothermal crystallization kinetics and morphology of the poly(vinylidene fluoride)(PVDF)/poly(ethylene adipate)(PEA) blends have been studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy(SEM). A depression of the equilibrium melting point of PVDF was observed. From the melting point data of PVDF, a negative but quite small value of the interaction parameter ?PVDF-PEA is derived using the Flory-Huggins equation, implying that PVDF shows miscibility with PEA to some extent. Nonisothermal and isothermal crystallization kinetics suggest that the crystallization rate of PVDF decreases with increasing the amount of PEA, and a contrary trend was found when PEA crystallizes with the increase of the amount of PVDF. It was further disclosed that the blend ratio and crystallization temperature affect the texture of PVDF spherulites greatly, which determines the subsequent crystallization of PEA. At high temperatures, e.g. 150 ℃, the band spacing of PVDF spherulites increases with the addition of PEA content and the spherulitic structure becomes more open. In this case, spherulitic crystallization of PEA is not observed for all blend compositions. At low temperatures, e.g. 130 ℃, for the PEA-rich blends, the interpenetrated structures are eventually formed by the penetration of the spherulites of PEA growing within the pre-existing PVDF spherulites.  相似文献   

3.
The crystallization behavior of syndiotactic polystyrene (sPS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory.On the basis of the differential scanning calorimetric results,it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness,which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization.Further temperature dependent small-angle X-ray scattering (SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition,involving three different regimes:lamellae stable region (25-90 ℃),melt-recrystallization region (90-185 ℃) and pre-phase transition region (185-195 ℃).As a result,recrystallization line,equilibrium recrystallization line and melting line were developed for the sPS γform crystallization process.Since the melt of γform involved a γto-α/β form phase transition,the melting line was also denoted as the phase transition line in this special case.Therefore,the equilibrium crystallization temperature and melting (phase transition)temperatures were determined at around 390 and 220 ℃ on the basis of the thermodynamic phase diagram of the sPS γform.  相似文献   

4.
王海军 《高分子科学》2015,33(6):823-829
The effects of PEA on the γ-phase PVDF crystal structure and the crystallization of PEA within the pre-existing γ-phase PVDF spherulites have been investigated by optical microscopy(OM), infrared spectroscopy(IR) and scanning electron microscopy(SEM). The results demonstrate that the γ-phase PVDF spherulites consist of the lamellae exhibiting a highly curved scroll-like morphology and develop preferentially in PEA-rich blend. With increasing PEA concentration, the scroll diameter increases and the scrolls are better separated from each other. PEA crystallizes first in the interspherulitic region and transcrystalline layer develops. Subsequently, the transcrystalline layer of PEA continues to grow within the γ-phase PVDF spherulites, e.g., in the region between the scrolls, until impinging on other PEA transcrystalline layers or spherulites. The crystallization kinetics results indicate that the growth rate of PEA crystals in the intraspherulitic region of γ-phase PVDF shows a positive correlation with content of PEA, but a negative one with the crystallization temperature of γ-phase PVDF.  相似文献   

5.
李慧慧 《高分子科学》2012,30(2):269-277
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions.It was found that neat PVDF forms largeγform spherulites with extraordinarily weak birefringence at 170℃.Adding 30%PBS makes PVDF exhibit intrigued flower-like spherulitic morphology.The growth mechanism was explained by the decrease of the supercooling and the materials dissipation.Increasing the PBS content to 70%favors the formation of ring banded spherulites.Temperature dependent experiments verify theα→γphase transition occurs from the junction sites of theαandγcrystals,while starts from the centers ofαspherulites in the blends.Ring banded structures could be observed in neat PVDF,70/30 blend and 30/70 blend when crystallized at 155℃,withoutγcrystals.The band period of PVDFαspherulites increases with crystallization temperature as well as the amount of PBS content.At 140℃,spherulites in neat PVDF lose their ring banded feature,while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.  相似文献   

6.
In this study, a series of monodispersed poly(L-lactide)(PLLA) were synthesized by the ring-opening polymerization with Schiff base aluminum catalyst, and the effects of the number-average molecular weight(Mn) on the crystallization and melting behaviors of PLLA were investigated by differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WAXD). The total crystallization rate of PLLA was Mn-dependent, which reached the maximum value for PLLA with Mn of 18.6 kg/mol. In addition, when Mn of PLLA was 18.6 kg/mol, the melting enthalpy(ΔHm) showed a maximum value(87.1 J/g), which was the highest reported value till now. The critical temperature for change of crystal formation from ?-form to ?-form crystals increased in the isothermal crystallization process with Mn increasing. In the reheating procedure, high-Mn PLLA demonstrated a small exothermal peak prior to the dominant melting peak, corresponding to crystal transition from ?- to ?-form, but low-Mn PLLA didn't show the peak of crystal transition. These different crystallization and melting behaviors were attributed to the different chain mobility of PLLA with different Mn.  相似文献   

7.
闫寿科 《高分子科学》2016,34(4):513-522
Oriented thin films of P3HT were obtained by a friction-transfer technique. The morphology and structure of the film were studied by means of optical microscopy, atomic force microscopy and transmission electron microscopy. Optical microscopy observation indicates that large size well-ordered P3HT thin films can be produced by a friction-transfer technique. Highly ordered lamellae were observed in P3HT friction-transferred films by electron microscopy. Electron diffraction results confirm the existence of high orientation with the a- and c-axes of P3HT crystals aligned in the film plane while the c-axis parallel to the friction-transfer direction. The atomic force microscopy observation of the as-prepared P3HT thin film shows, however, a featureless top surface morphology, indicating the structure inhomogeneity of the obtained film. To get highly oriented P3HT thin films with homogenous structure, high temperature annealing, solvent vapor annealing and self-seeding recrystallization of the friction-transferred film were performed. It is confirmed that solvent vapor annealing and self-seeding recrystallization methods are efficient in improving the surface morphology and structure of the frictiontransferred P3HT thin film. Highly oriented P3HT films with unique structure can be obtained through friction-transfer with subsequent solvent vapor annealing and self-seeding recrystallization.  相似文献   

8.
王笃金 《高分子科学》2011,29(2):251-258
The early stage of polymer crystallization may be viewed as physical gelation process,i.e.,the phase transition of polymer from liquid to solid.Determination of the gel point is of significance in polymer processing.In this work,the gelation behavior of poly(butylene succinate)(PBS) at different temperatures has been investigated by rheological method.It was found that during the isothermal crystallization process of PBS,both the storage modulus(G′) and the loss modulus(G″) increase with time,and the rheological response of the system varies from viscous-dominated(G′G″),meaning the phase transition from liquid to solid.The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies.The gel time(t_c) for PBS was found to increase with increasing crystallization temperature.The relative crystallinity of PBS at the gel point is very low(2.5%-8.5%) and increases with increasing the crystallization temperature.The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network,indicating that the network is"loosely"connected,in another word,the critical gel is soft.Due to the elevated crystallinity at gel point under higher crystallization temperature,the gel strength S_g increases, while the relaxation exponent n decreases with increasing the crystallization temperature.These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers.  相似文献   

9.
In this study,the poly(D-lactide)-block-poly(butylene succinate)-block-poly(D-lactide)(PDLA-b-PBS-b-PDLA)triblock copolymers with a fixed length of PBS and various lengths of PDLA are synthesized,and the crystallization behaviors of the PDLA and PBS blocks are investigated.Although both the crystallization behaviors of PBS and PDLA blocks depend on composition,they exhibit different variations.For the PDLA block,its crystallization behaviors are mainly influenced by temperature and block length.The crystallization signals of PDLA block appear in the B-D 2-2 specimen,and these signals get enhanced with PDLA block length.The crystallization rates tend to decrease with increasing PDLA block lendth during crystallizing at 90 and 100°C.Crystallizing at higher temperature,the crystallization rates increase at first and then decrease with block length.The crystallization rates decrease as elevating the crystallization temperature.The melting temperatures of PDLA blocks increase with block lengths and crystallization temperatures.For the PBS block,its crystallization behaviors are mainly controlled by the nucleation and confinement from PDLA block.The crystallization and melting enthalpies as well as the crystallization and melting temperatures of PBS block reduce as a longer PDLA block has been copolymerized,while the crystallization rates of the PBS block exhibit unique component dependence,and the highest rate is observed in the B-D 2-2 specimen.The Avrami exponent of PBS crystallites is reduced as a longer PDLA block is incorporated or the sample is crystallized at higher temperature.This investigation provides a convenient route to tune the crystallization behavior of PBS and PLA.  相似文献   

10.
The crystallization behavior of syndiotactic polystyrene(s PS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory. On the basis of the differential scanning calorimetric results, it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness, which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization. Further temperature dependent small-angle X-ray scattering(SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition, involving three different regimes: lamellae stable region(25-90 °C), melt-recrystallization region(90-185 °C) and pre-phase transition region(185-195 °C). As a result, recrystallization line, equilibrium recrystallization line and melting line were developed for the s PS γ form crystallization process. Since the melt of γ form involved a γ-to-α/β form phase transition, the melting line was also denoted as the phase transition line in this special case. Therefore, the equilibrium crystallization temperature and melting(phase transition) temperatures were determined at around 390 and 220 °C on the basis of the thermodynamic phase diagram of the s PS γ form.  相似文献   

11.
After annealing the solution cast P(VDF-TrFE) films at elevated temperatures, which were synthesized via a full hydrogenation process from P(VDF-CTFE) with a composition of VDF/TrFE = 80/20(mol%), a series of P(VDF-TrFE) films were fabricated in present work. The crystalline and ferroelectric phases of the films were carefully characterized and their dielectric, ferroelectric and piezoelectric properties were systematically investigated. The improved crystalline and ferroelectric phases in the films induced by annealing at elevated temperatures are responsible for the significant improved electric properties of the films. The optimized annealing temperature is found to be 130 °C and the best performance including the highest dielectric constant of 12.5 at 1 kHz, the largest maximum polarization of 11.21 μC/cm~2 and remnant polarization of 7.22 μC/cm~2, the lowest coercive electric field of 56 MV/m, and the highest piezoelectric coefficient of -25 pC/N is observed.  相似文献   

12.
陈尔强 《高分子科学》2013,31(6):946-958
Crystal orientation and melting behavior of poly(ε-caprolactone) in a diblock copolymer of poly(ε-caprolactone)-block-poly(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PCL-b-PMPCS) was investigated. The degrees of polymerization of the PCL and PMPCS block are 200 and 98, respectively. With the PMPCS in a columnar liquid crystalline phase, the diblock is rod-coil one, which exhibits a lamellar phase morphology with the PCL layer thickness of 15.2 nm. Since the glass transition temperature of PMPCS block is much higher than the melting temperature of PCL, the crystallization of PCL is in a one-dimensionally "hard" confinement environment. Mainly on the basis of two-dimensional wide-angle X-ray diffraction experiments, we identified the orientation of PCL isothermally crystallized at various crystallization temperatures (Tcs). At high Tcs (Tc≥10℃), the c-axis of the PCL crystal is along the layer normal of the microphase-separated sturcture. Decreasing Tc can result in the tilting of PCL c-axis with respect to the layer normal. The lower the Tc is, the more the c-axis inclines. Meanwhile, the b-axis of PCL remains perpendicular to the layer normal. At a very low Tc of -78℃, the orientation of the PCL crystals is completely random. For the samples isothermally crystallized at Tc≤10℃, double melting behavior can be observed. While the low temperature endotherm reflects the melting of the crystals originally formed at the Tc applied, the high temperature one is associated with the crystals subjected to the process of recrystallization/reorganization upon heating due to the annealing effect.  相似文献   

13.
乔从德 《高分子科学》2013,31(9):1321-1328
The melting and crystallization behaviors of poly(ε-caprolactone) (PCL) ultra-thin films with thickness from 15 nm to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 °C may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra-thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.  相似文献   

14.
κ־�� 《高分子科学》2013,31(1):187-200
Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.  相似文献   

15.
In this study,the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) (PBAC),which refers to a copolyester containing a non-planar ring structure,were investigated by differential scanning calorimetry and polarized optical microscopy,and compared with those of neat poly(butylene 1,4-cyclohexanedicarboxylate) (PBC).The results indicate that the introduction ofbutylene adipate (BA) unit into PBAC did not change the intrinsical crystallization mechanism.But,the crystallization rate and ability,and equilibrium melting temperature of PBAC copolymers were reduced.All PBC and PBAC copolymers could only form high density of nucleation from melt at given supercooling,while no Maltese cross or ring-banded spherulites could be observed.PBAC copolymers with a high amount of BA unit became amorphous after quenching with liquid nitrogen from melt,while PBC and PBAC copolymers with a low amount of BA unit could still form a large amount of nuclei under the same treatment.  相似文献   

16.
The morphologies of poly(L-lactic acid) (PLLA) spherulites,when crystallized within the pre-existed poly(oxymethylene)(POM) crystal frameworks,have been investigated.PLLA/POM blend is a melt-miscible crystalline/crystalline blend system.Owing to the lower melting point but much faster crystallization rate than PLLA,POM crystallized first upon cooling from the melt state and then melted first during the subsequent heating process in this blend system.Lamellar assembly of PLLA crystals within the pre-existed POM spherulitic frameworks was directly observed with the polarized light microscopy by selectively melting the POM frameworks.The investigation indicated that PLLA crystals fully replicated the spherulitic morphology and optical birefringence of the POM crystal frameworks,which was independent of Tc.On the other hand,POM could also duplicate the pre-existed PLLA morphologies.The result obtained provides us a possibility to design the lamellar assembly and crystal structures of polymer crystals in miscible crystalline/crystalline polymer blends.  相似文献   

17.
The crystallization and melting behavior of polymers is of theoretical importance. In this work, poly(butylene succinate)(PBS) was selected as an example to study such behavior at low supercooling via introduction of the extended-chain crystal(ECC) of the same polymer as nucleating agent. The crystallization of PBS with its ECC as nucleating agent in a wide temperature range(90–127 °C) and the following melting behavior were studied. It is revealed that the melting point(T_m, for T_c≥113 °C) and the annealing peak temperature(T_a, for T_c=90–100 °C) show similar asymptotic behavior. Both T_m and T_a approach to a value of ca. 3.3 °C higher than the corresponding T_c when the crystallization time tc approaches the starting point. That is to say, the Hoffman-Weeks plot is parallel to T_m=T_c line. The crystallization line became parallel to the melting line when PBS was crystallized at T_c higher than 102 °C. Based on these results, we propose that the parallel relationship and the intrinsic similarity between the T_a and the T_m observed at the two ends of the T_c range could be attributed to the metastable crystals formed at the beginning of crystallization.  相似文献   

18.
THE DOUBLE MELTING PEAKS OF POLY(ETHYLENE TEREPHTHALATE)   总被引:2,自引:0,他引:2  
Three sets of PET samples, comprising original (undrawn), uniaxially drawn and biaxially ones, after annealed at 230°, 240°and 250℃respectively, were subjected to DSC thermal analysis, X-ray diffraction analysis and IR analysis. The results indicate that the phenomenon of double melting peaks during DSC analysis is due to the partial melting and recrystallization of the crystallite at the moment of thermal scanning. The lower temperature peak, which varies slightly according to annealing condition, corresponds to the melting of imperfect crystallite, and the higher temperature peak corresponds to the melting of better organized crystallite. In the course of temperature scanning, the unit cell parameters of PET remains unchanged while the crystals turn to better crystal lattice, greater crystal size and more regular folding.We also found that there is a slight reduction in crystal size between the two melting peaks, and an explanation is suggested for this phenomenon.  相似文献   

19.
王维 《高分子科学》2013,31(5):798-808
Crystal patterns in ultrathin films of six poly(ethylene oxide) fractions with molecular weights from 25000 to 932000 g/mol were characterized within crystallization temperature range from 20 ℃ to 60 ℃.Labyrinthine,dendritic and faceted crystal patterns were observed in different temperature ranges,and then labyrinthine-to-dendritic and dendritic-tofaceted transition temperatures T L-D and T D-F were quantitatively identified.Their molecular weight dependences are T L-D(M w) = T L-D(∞) K L-D /M w,where T L-D(∞) = 38.2 ℃ and K L-D = 253000 ℃.g/mol and T D-F(M w) = T D-F(∞) K D-F /M w,where T D-F(∞) = 54.7 ℃ and K D-F = 27000 ℃.g/mol.Quasi two-dimensional blob models were proposed to provide empirical explanations of the molecular weight dependences.The labyrinthine-to-dendritic transition is attributed to a molecular diffusion process change from a local-diffusion to diffusion-limited-aggregation(DLA) and a polymer chain with M w ≈ 253000 g/mol within a blob can join crystals independently.The dendritic-to-faceted transition is attributed to a turnover of the pattern formation mechanism from DLA to crystallization control,and a polymer chain with a M w ≈ 27000 g/mol as an independent blob crosses to a depletion zone to join crystals.These molecular weight dependences reveal a macromolecular effect on the crystal pattern formation and selection of crystalline polymers.  相似文献   

20.
Amorphous poly(9,9-di-n-octyl-2,7-fluorene)(PFO)thin films were characterized in situ via thermal an- nealing based on grazing incidence X-ray diffraction(GIXRD)profiles,UV-visible absorption spectrophotometry,and Fourier transform infrared spectroscopy(FTIR).The results of GIXRD indicated that the amorphous phase transformed into a crystalline phase when the annealing temperature was higher than 80 ℃.Different outcomes were elicited for the intensities and d-spacings of the diffraction peaks below and above 80 ℃,which were attributed to the formation of the κ-phase.The mechanism of phase transition was revealed by in situ UV-visible absorption and FTIR spectra,whereby the rearrangement of the side chains was dominant and the movement of the main chains was minimal,even when the annealing temperature was lower than 80 ℃.In contrast,the rearrangement of the main chains was dominant when the temperature was higher than 80 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号