首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计并合成了一种交叉共轭的(cross-conjugated)缺电子型聚合物单体——二溴代噻吩[2,3-b]并噻吩-吡咯[3,4-c]并吡咯(DPPTTZ)二酮,并将其分别与噻吩(T)、硒吩(Se)和N-甲基吡咯(Py)的双锡试剂进行共聚反应,获得了一类新的供体-受体(D-A)型共轭聚合物光电材料.这类材料分子的最高占有轨道(HOMO)能级较低,因此其光电器件具有较高的开路电压(Voc),稳定性好.此外,它们在紫外-可见光区有较宽的吸收,最大吸收位于波长620 nm附近;能带隙(band gap)小,分别为1.86 e V(p DPPTTZ-T)、1.83 e V(p DPPTTZ-Se)和1.85 e V(p DPPTTZ-Py).器件初步测试结果表明,上述聚合物与PC71BM组成的本体异质结聚合物太阳能电池Voc在0.68~0.81 V之间,能量转化效率(PCE)最高达3.05%(p DPPTTZ-T).  相似文献   

2.
设计、合成了侧链含有强吸电结构的丙二酸二丁酯受体单元与苯并[1,2-b:4,5-b′]二噻吩给体单元交替共聚物PBDTDT,研究了其热学、光学、电化学性质以及与受体PC71BM([6,6]-苯基C71丁酸甲酯)共混作为活性层制备成本体异质结聚合物有机太阳能电池的光伏性质,考察了PBDTDT与PC71BM不同比例时的光伏性能,当聚合物PBDTDT和PC71BM质量比为1∶3制备的器件,其开路电压达到了0.82 V,能量转换效率(PCE)为0.90%,短路电流为3.25 mA/cm2,填充因子FF为0.338,同时将其与同等工艺制备的poly(3-hexylthiophene)(P3HT)太阳能电池的光伏性能进行比较,相同工艺下制备的P3HT电池的开路电压仅为0.55 V,由PBDTDT制备的电池开路电压比P3HT电池的开路电压高出0.29V,同时分析了PBDTDT能量转换效率较P3HT低的原因.  相似文献   

3.
合成了两种非对称芳基取代的并三噻吩化合物.以2-溴-5-三甲基硅-二噻吩并[2,3-b:3′,2′-d]噻吩为原料,经脱除四甲基硅烷(TMS)和Suzuki偶联两步反应制备了2-噻吩基二噻吩并[2,3-b:3′,2′-d]噻吩,总产率为67.4%;以2-苯基二噻吩并[2,3-b:3′,2′-d]噻吩为原料,经N-溴代琥珀酰亚胺(简称NBS)溴代和Suzuki偶联两步反应制备了2-苯-5-噻吩基二噻吩并[2,3-b:3′,2′-d]噻吩,总产率为27.8%.产物经核磁共振谱(1H NMR,13C NMR)和质谱(MS)分析确认;利用紫外-可见分光光度法(UV-Vis)分析了合成产物的荧光特性.结果表明,由于苯基的存在,2-噻吩-5-苯基二噻吩并[2,3-b:3′,2′-d]噻吩分子的共轭体系增大,导致其吸收峰红移、发光能力减弱.  相似文献   

4.
设计合成了主链为聚2,8-{5,11-二烷基吲哚[3,2-b]咔唑}-4,7[2,5-噻吩]-二-5,6-二烷氧基-2,1,3-苯并噻二唑, 具有不同侧链的2种平面型给-受体共轭聚合物(QP-2和QP-3), 研究了其热学、光物理和光伏性质. 用聚合物-PC71BM([6,6]-苯基C71丁酸甲酯)共混物作为活性层构筑了本体异质结聚合物太阳能电池. 其中以QP-3为给体、以PC71BM为受体的光伏电池能量转换效率最高达到2.59%, 开路电压为0.72 V, 短路电流为9.24 mA/cm2, 填充因子为0.38. XRD结果表明, 平面型共轭聚合物具有较好的结晶性, 原子力显微镜(AFM)显示平面型共轭聚合物易于发生微观相分离.  相似文献   

5.
设计并通过Stille缩聚方法合成了一种基于四氟苯和4,8-双(5-(2-乙基己基)噻吩-2-基)-苯并[1,2-b:4,5-b’]二噻吩单元的推拉电子型宽带隙聚合物(PBDT4F)作为聚合物太阳能电池的给体材料。用核磁共振氢谱(1H-NMR)、凝胶渗透色谱(GPC)、热重分析、紫外-可见吸收光谱和循环伏安法等对其进行了表征。结果表明:PBDT4F对400~600 nm短波长光具有强吸收能力,并且具有低的最高占有轨道(HOMO)能级和适合的最低未占有轨道(LUMO)能级。基于PBDT4F为给体、有机小分子(5Z,5’Z)-5,5’-((7,7’-(4,4,9,9-四辛基-4,9-二氢-s-茚并[1,2-b:5,6-b’]二噻吩-2,7-二基)双(苯并[c][1,2,5]噻二唑-7,4-二基)双(亚甲叉))双(3-乙基-2-硫代-4-噻唑烷二酮)(O-IDTBR)为受体的共混活性层的光伏器件取得了0.986 V的开路电压和2.58%的光电转化效率。  相似文献   

6.
以噻并[3,2-b]噻吩(TT)修饰的二维苯并[1,2-b:4,5-b′]二噻吩(BDT)作给电子单元、TT作共轭π桥、苯并[d][1,2,3]三氮唑(BTA)或5,6-二氟苯并[d][1,2,3]三氮唑(FBTA)作缺电子单元,在三(二亚苄基丙酮)二钯(Pd2(dba)3)、三(邻甲苯基)膦(P(o-tol)3)催化剂体系下通过Stille缩合聚合方法制备了宽带隙共聚物PTTBDT-BTA和PTTBDT-FBTA。用核磁共振氢谱(1 H-NMR)和碳谱(13C-NMR)、元素分析、凝胶渗透色谱(GPC)、热重分析、紫外-可见吸收光谱和循环伏安法等对其进行了表征。系统研究了氟取代对材料的热稳定性、成膜性、吸收光谱、溶液状态下的聚集行为、固态薄膜的光稳定性、能级和光伏性能的影响。研究表明:相比PTTBDT-BTA,氟代聚合物PTTBDT-FBTA失重5%的热分解温度提高了20℃、溶解性明显变差、薄膜态吸光范围稍微变窄、氯苯溶液状态下聚合物链间聚集作用显著增强、薄膜的光稳定性提高且最高分子占有轨道能级(EHOMO)下降了0.10V。光伏性能测试显示氟取代使PTTBDT-FBTA基器件的能量转换效率(PCE)提高了49.3%,这获益于开路电压(UOC)提高了16.9%、短路电流密度(JSC)提高了13.2%和填充因子(FF)提高了11.8%。  相似文献   

7.
非富勒烯小分子受体(SMAs)有序聚集决定聚合物/非富勒烯共混体系光伏电池的双分子复合几率。 然而,由于非对称相分离聚合物趋于优先形成网络,抑制小分子受体分子结晶。 在聚[(2,6-(4,8-二(5-(2-乙基己基噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩))-alt-(5,5-(1',3'-二-2-噻吩基-5',7'-二(2-乙基己基)苯并[1',2'-c:4',5'-c']二噻吩-4,8-二酮))](PBDB-T)/9-二(2-亚甲基(3-(1,1-二氰基亚甲基)-6,7-二氟-茚酮))-5,5,11,11-四(4-己基苯基)-二噻吩并[2,3-d:2',3'-d']-s-引达省[1,2-b:5,6-b']二噻吩(IT-4F)共混体系,四氢呋喃蒸汽处理可提高IT-4F结晶性,150 ℃热退火可提高PBDB-T的结晶性。 因此,依次利用蒸汽退火和热退火处理薄膜,诱导小分子先结晶、聚合物后结晶,从而降低PBDB-T对小分子扩散的限制,构建高结晶互穿网络结构。 形貌优化后降低了双分子复合,器件光电转换效率从5.95%提高至7.18%。  相似文献   

8.
设计并合成了4个基于含硫芳杂稠环化合物的可溶性共轭齐聚物,即以3-十一烷基苯并[d,d’]噻吩并[3,2-b;4,5-b ’]并二噻吩(BTTT)为末端芳香单元,噻吩(T)、二噻吩(bT)、N-十二烷基-二噻吩并[3,2-b]吡咯(TP)或2,5-双(3-十二烷基噻吩)[3,2-b]并二噻吩 (qT)为中间芳香单元的...  相似文献   

9.
以二噻吩[3,2-b:2',3'-d]并吡咯为电子给体单元、2,1,3-苯并噻二唑为电子受体单元.通过Stille偶联反应合成了4个含不同烷基取代基的给体-受体(D-A)型共轭齐聚物,即O-D3,O-D2P1,O-D1P2和O-P3,它们分别含有3~0个正十二烷基(D=dodecyl)和0~3个支化烷基链戊基己基(P=...  相似文献   

10.
通过Stille聚合反应合成了含有苯并[1,2-b:4,5-b']二噻吩和二噻吩邻苯二甲酰亚胺的D-A结构平面共聚物PBDTPhBT.该聚合物热稳定性和在常见有机溶剂中的溶解性良好、在380~580nm范围内有强吸收.分子模拟计算的结果表明,聚合物主链具有较好的平面型.PBDTPhBT的光学带隙为2.10eV、用电化学方法测量的HOMO能级为5.23eV.以聚合物PBDTPhBT为给体、PC70BM为受体(给受体重量比为1:1)、Ca/Al为负极制备了本体异质结聚合物太阳能电池.在AM1.5,100mWcm2光照条件下器件的开路电压和短路电流分别为0.79V和5.63mAcm2,能量转换效率达到了1.76%.  相似文献   

11.
在本工作中,我们以烷硫基噻吩基取代的苯并二噻吩(BDTT-S)为给体单元、5, 6-二氟取代苯并三唑(FBTz)和噻唑并噻唑(TTz)为弱吸收电子受体单元,设计合成了一系列宽带隙的无规三元共聚物给体材料。通过改变两个受体单元FBTz和TTz在聚合物中的摩尔比,有效调节了聚合物的光学、电化学、分子排列以及电荷传输性能。最终,使用非卤溶剂为加工溶剂,以三元共聚物PSBTZ-60为给体、ITIC为非富勒烯受体的聚合物太阳能电池(PSCs)获得了10.3%的能量转换效率(PCE),其中开路电压为0.91 V,短路电流为18.0 mA·cm−2,填充因子为62.7%;与之相比,在相同的器件制备条件下,基于PSTZ:ITIC的PSCs仅获得8.5%的PCE,基于PSBZ:ITIC的PSCs也仅获得8.1%的PCE。这些结果表明:三元无规共聚能够作为一种简单且实用的策略去设计、合成高性能聚合物光伏材料。  相似文献   

12.
合成了一种给-受体型平面分子结构的低带隙共轭聚合物QP-1(聚[2,6-4,8-双十二烷氧基苯并[1,2-b;3,4-b’]二噻吩-4,7-二[2,5-噻吩]-5,6-二烷氧基-2,1,3苯并噻二唑)),研究了其热学、光物理和光伏性质。由电化学测试得到聚合物的带隙为1.79eV,最高分子占有轨道HOMO和最低分子未占轨道LUMO值分别为-5.47 eV和-3.49 eV。与富勒烯的衍生物PCBM有较为理想的能级匹配水平。使用聚合物/PC71BM共混物作为活性层构筑了本体异质结聚合物太阳能电池。光伏电池的能量转换效率为1.01%,开路电压为0.58 V,短路电流为4.25 mA/cm2,填充因子ff值为0.33。X射线粉末衍射(XRD)结果显示平面主链间的距离为0.365nm,具有较好的结晶性。  相似文献   

13.
采用Stille缩聚反应,合成了3,5-二烷基-二噻吩并[3,2-b:2',3'-d]氧膦杂环戊二烯与二联噻吩的共聚物P1和P2,系统研究了它们的热性能、电化学性质和光物理性质.结果表明,这2个聚合物具有良好的热稳定性,热分解温度均大于400℃;薄膜的最大吸收峰位于590 nm,光学带隙为1.76 eV.将P1和P2作为活性层制备了薄膜晶体管和体异质结太阳能电池,发现带有较长烷基链的P2的器件性能较好.在底栅、顶接触结构的薄膜晶体管中,P2的空穴迁移率最高达到0.0077 cm2V-1s-1;在AM 1.5 G 100 mW/cm2光照条件下,P2的光伏电池的开路电压为0.68 V,短路电流为7.9 mA/cm2,填充因子为52%,能量转换效率为2.8%.  相似文献   

14.
以苯并[1,2-c:4,5-c']二[1,2,5]噻重氮和吡嗪并[2,3-g]喹喔啉为电子受体(A),噻吩、噻吩并[3,2-b]噻吩和二噻吩并[2,3-b:2',3'-d]噻吩为电子供体(D),设计了6种D-A型共轭聚合物.采用B3LYP方法,研究了这6种聚合物的几何结构和电子性质.D-A型共轭聚合物的几何结构和电子结构与电子供体和电子受体的性质,特别是与其提供电子和接受电子的能力密切相关.聚合物的能隙主要受键长交替控制,键长交替越小,能隙越窄.所设计的6种聚合物中,p-BBT-TT具有较窄的能隙(0.48 eV)、较小的载流子有效质量和相对较大的能带宽度,具备理论上的良好导电性能,可能是潜在的优良导电聚合物材料.  相似文献   

15.
本文报道了对一种电子给体-受体化合物(E)-(5-(4-(二苯基胺)苯乙烯基)二噻吩并[2,3-b∶3′,2′-d]噻吩基)-2-亚甲基丙二腈(TPA-DCST)的合成与光谱学行为的研究。化合物TPA-DCST的分子结构中含有强电子给体(三苯胺)与强电子受体(二氰基乙烯)两个部分,并由二噻吩并[2,3-b∶3′,2′-d]噻吩作为共轭桥将电子给体与受体相连接。在合成方面,采用Wittig反应将三苯胺通过双键与二噻吩并[2,3-b∶3′,2′-d]噻吩相连接、醛基化,并与并二腈经Knoevenagel缩合反应合成目标产物。产物通过了核磁氢谱、碳谱、红外以及高分辨率质谱的确认。光谱方面,主要考察了该化合物的吸收与荧光行为。其最大吸收峰位在412nm左右,归属于π-π*跃迁。在非极性溶剂正己烷中表现出来自分子间聚集而形成的聚集态荧光(550nm),并通过了单分子在CTAB胶束([c]=1.02×10-2 mol/L)的发光(460nm)试验得到验证。溶剂效应表明,该化合物没有出现典型的ICT态的发光现象,其原因在于电子给体与受体相连的共轭桥单元,即二噻吩并[2,3-b∶3′,2′-d]噻吩不具有有效的共轭效应。浓度效应与温度效应进一步表明TPA-DCST分子易于产生分子间聚集态的发光。在THF-H_2O二元溶剂体系中呈现典型的聚集诱导(AIE)发光现象,发光峰位为692nm。随着TPA-DCST分子间的聚集程度的增加,聚集态的荧光出现大范围的红移,直至固体发光红移到710nm。TPA-DCST分子的聚集因素可能来自于疏脂作用、偶极-偶极相互作用等。  相似文献   

16.
设计合成了3种主链相同、侧基不同的Donor(D)-π-Acceptor(A)型共轭聚合物:聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-氰基苯基)-9H-咔唑)](PBDTCz-CN)、聚[(4,8-二辛氧基苯[1,2-b;3,4-b′]二噻吩)-(9-(4-醛基苯基)-9H-咔唑)](PBDTCz-CHO)和聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-硝基苯基)-9H-咔唑)](PBDTCz-NO_2)。通过调变侧基上的受体基团,比较了氰基、醛基、硝基对聚合物光学和电学性能的影响,讨论了影响聚合物光电转换效率的主要因素。3种聚合物的光学带隙和线性吸收系数依次分别为2.32 eV,152.0 L/(g·cm);2.43 eV,58.5 L/(g·cm)和2.25 eV,85.5 L/(g·cm)。在这些聚合物中,彼此间的最高占据分子轨道(HOMO)能级差距很小,PBDTCz-NO_2的最低未占据分子轨道(LUMO)能级最低(-3.38eV)。在100 W/m~2模拟太阳光的照射下,基于这些聚合物的光伏器件(器件结构:ITO/PEDOT:PSS/Polymer:[70]PCBM(1:2)/Ca/A1)的光电转换效率分别为0.44%(PBDTCz-CN)、0.001 8%(PBDTCz-CHO)和0.23%(PBDTCz-NO_2)。低的光电转换效率主要归因于低的短路电流,而影响短路电流的主要原因有自身吸光性能的限制和弱的π-π堆砌作用。  相似文献   

17.
以噻并[3,2-b]噻吩为共轭侧基,苯并[1,2-b:4,5-b′]二噻吩和磺酰基取代的噻并[3,4-b]噻吩为共聚单元,在Pd2(dba)3-P(o-tol)3催化下,经Stille缩聚反应合成了二维窄带隙醌式共聚物(PTTBDT-TTS, 1),其结构和性能经1H NMR,元素分析,凝胶渗透色谱(GPC), UV-Vis, TGA和循环伏安法表征。结果表明:1具有良好的成膜性和热稳定性;1在300~800 nm对太阳光有较强吸收,HOMO能级为-5.45 eV;倒置光伏器件(1/PC-61-BM)的开路电压为0.95 V,能量转换效率约为1.07%。  相似文献   

18.
在本工作中,我们以烷硫基噻吩基取代的苯并二噻吩(BDTT-S)为给体单元、5,6-二氟取代苯并三唑(FBTz)和噻唑并噻唑(TTz)为弱吸收电子受体单元,设计合成了一系列宽带隙的无规三元共聚物给体材料。通过改变两个受体单元FBTz和TTz在聚合物中的摩尔比,有效调节了聚合物的光学、电化学、分子排列以及电荷传输性能。最终,使用非卤溶剂为加工溶剂,以三元共聚物PSBTZ-60为给体、ITIC为非富勒烯受体的聚合物太阳能电池(PSCs)获得了10.3%的能量转换效率(PCE),其中开路电压为0.91 V,短路电流为18.0 mA·cm-2,填充因子为62.7%;与之相比,在相同的器件制备条件下,基于PSTZ:ITIC的PSCs仅获得8.5%的PCE,基于PSBZ:ITIC的PSCs也仅获得8.1%的PCE。这些结果表明:三元无规共聚能够作为一种简单且实用的策略去设计、合成高性能聚合物光伏材料。  相似文献   

19.
杨瑞  蔡雪刁  丁黎明 《化学学报》2015,73(3):281-288
还原橙3具有稠环结构, 但是其在许多有机溶剂中的不溶性阻碍其作为光伏材料的使用. 对还原橙3进行修饰得到还原橙3的衍生物4,10-双(4-己基-2-噻吩基)-6,12-双(二氰基亚乙烯基)二氢化蒽并蒽(TCVA), 对TCVA的光电性能进行研究, 结果表明, TCVA在紫外-可见光区有较强的吸收, 循环伏安法表明TCVA的HOMO和LUMO能级分别为-6.04和-4.42 eV, 将其与P3HT共混制备太阳能电池, 其效率为0.3%. 将还原橙3衍生物作为受体单元制备D-A结构的给体聚合物聚4,10-双(4-己基-2-噻吩基)-6,12-双(二氰基亚乙烯基)二氢化蒽并蒽连2,6-双(三甲基锡)-4,4-二(2-乙基己基)二噻吩并[3,2-b:2',3'-d]噻咯(PTCVADTS), 该聚合物有非常窄的带隙0.94 eV, 但是由于其LUMO能级较受体材料(6,6)-苯基-C61(71)-丁酸甲酯(PCBM)的LUMO能级小, 阻碍了激子的分离, 使电池器件的效率很低.  相似文献   

20.
采用Stille交叉偶联反应,合成了基于6-烷基吡咯[3,4-d]哒嗪-5,7-二酮(PPD)与吡咯并吡咯二酮(DPP)结构单元的受体-π-受体(A_1-π-A_2)型共轭聚合物(PPPD-DPP)。采用热重分析仪、紫外分光光度计、电化学工作站等表征了聚合物PPPD-DPP的性能,系统地研究了聚合物的热性能、光物理性能、电化学性能及晶体管性能。结果表明:聚合物PPPD-DPP具有良好的热稳定性,热分解温度达到376℃;薄膜的最大吸收峰位于702nm,光学能带隙为1.27eV;有较低的最高占据分子轨道能级(HOMO,-5.23eV)。基于PPPD-DPP的有机薄膜晶体管(OTFTs)器件在真空中显示出双极性传输特性,最高电子和空穴迁移率分别为0.030 cm~2/(V·s)和0.054cm~2/(V·s),在空气中PPPD-DPP器件则表现出明显的p型传输特性,空穴迁移率提升至0.121cm~2/(V·s)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号