首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
不同晶粒大小HZSM-5载体对甲烷无氧芳构化反应的影响   总被引:3,自引:0,他引:3  
将不同晶粒大小的HZSM-5做为甲烷无氧芳构化反应催化剂的载体,系统研究了不同晶粒大小HZSM-5载体对反应的影响,研究发现,不同晶粒大小HZSM-5担载Mo催化剂具有不同的催化反应性能,同一体系下合成的不同晶粒大小的HZSM-5,其催化剂的催化活性与HZSM-5的酸量成正比,进一步证实了载体HZSM-5在该反应中起到酸催化作用,对于酸量相近的HZSM-5,其粒度越小,催化性能越好,纳米级HZSM-5担载Mo催化剂,其反应性能优于微米级HZSM-5担载Mo催化剂,以纳米HZSM-5为载体的6%Mo/HZSM-5催化剂具有最佳的反应性能:反应60min时,甲烷转化率为15.45%,苯收率为6.01%。  相似文献   

2.
用于甲烷脱氢芳构化反应Mo基催化剂的研究   总被引:3,自引:1,他引:3  
 通过对分子筛载体HZSM-5进行精密前处理,然后浸渍钼酸铵溶液和添加微量助剂Fe,分别制得催化剂Mo/HZSM-5(t)和Fe-Mo/HZSM-5(t),考察了它们对甲烷脱氢芳构化反应的催化性能.结果表明,在Mo/HZSM-5(t)催化剂上,反应5h后,甲烷的转化率可达11.4%,苯收率高于6.2%,在反应30h后,甲烷的转化率可达8.8%,苯收率高于5.3%,催化剂显示出较高的稳定性.微量助剂Fe的添加在保持催化剂稳定性的前提下进一步改善了催化剂的活性,使甲烷的转化率相对于Mo/HZSM-5(t)上的提高了18%,苯收率提高了52%.XRD和TPO测试表明活性组分Mo和助剂Fe高度分散于载体上或进入载体孔道中,载体的精密前处理及Fe的添加提高了催化剂的抗积炭能力,使得催化剂稳定性显著提高.  相似文献   

3.
利用天然气生产芳烃是一个有吸引力的课题,这个过程需要具有高性能活性位点的催化剂,以活化稳定的碳氢键.在甲烷直接转化方法中,将甲烷无氧脱氢芳构化(MDA)转化为高附加值芳烃(如苯、甲苯和萘)是甲烷增值的有效途径.本研究采用MoO3纳米带作为Mo源,微孔分子筛MCM-22作为载体制备双功能Mo基催化剂,结果表明MoO3纳米带高度分散在分子筛内部,与分子筛中Br?nsted酸中心结合形成有效活性中心,改善了甲烷无氧脱氢芳构化反应的催化活性,提高了催化剂的稳定性.在甲烷无氧脱氢芳构化反应测试中,当MoO3纳米带的负载量质量分数为6%时,N-Mo-HMCM-22催化剂催化的甲烷转化率达到14.1%,苯产率可达8.2%.本研究为合成高性能、稳定的MDA催化剂提供了一种更为简易的策略.  相似文献   

4.
Mo/HZSM-5催化剂上甲烷无氧芳构化反应中积炭的研究   总被引:2,自引:0,他引:2  
 对经过程序升温表面甲烷无氧芳构化反应后的Mo/HZSM-5催化剂上的积炭进行程序升温加氢反应和程序升温二氧化碳反应,并对相应的催化剂上的积炭进行程序升温氧化反应和热重实验,以研究催化剂上的不同积炭物种.结果表明,甲烷无氧芳构化反应后有两类烧炭峰,一类是低温烧炭峰,另一类是高温烧炭峰;H2主要对高温烧炭峰发生作用,对低温烧炭峰几乎没有影响;CO2可同时对两种烧炭峰产生影响.由此推论,甲烷在无氧条件下直接转化生成芳烃的反应过程中,沉积在Mo/HZSM-5催化剂上的积炭有三种形式,即:能够与H2反应的积炭,能够与CO2反应的积炭和可能以Mo2C形式存在的物种.  相似文献   

5.
不同方法制备的Mo/HZSM-5催化剂上甲烷的芳构化反应   总被引:8,自引:0,他引:8  
 采用机械混合、机械混合后焙烧和机械混合后微波处理等方法制备Mo/HZSM-5催化剂,并对催化剂上甲烷芳构化反应性能进行了考察.结果表明,与浸渍法相比,用机械混合法、固相反应法和微波法制备的催化剂,在保持甲烷转化率不变的前提下,能明显提高芳烃选择性并减少积炭的生成;不同方法制备的Mo/HZSM-5催化剂上Mo物种的落位不同,机械混合法、固相反应法和微波法使Mo物种较多地落位于分子筛外表面.结合反应结果可以得出,落位于分子筛外表面的Mo物种对甲烷芳构化反应更为有利,而且明显减少积炭的生成.  相似文献   

6.
表面性质对甲烷芳构化Mo基催化剂反应性能的影响   总被引:1,自引:0,他引:1  
研究了不同载体对Mo基催化剂反应性能的影响,发现对于在无氧条件下的甲烷芳构化反应,分子筛酸性,结构和金属氧化物的存在这3个因素是至关重要的,考察了作为第2组分的Zn,W,Cu,Cr,Ni5种元素对Mo/HZSM-5反应性能的影响,发现第2组分的添加均在不同程度上提高了催化剂的甲烷芳构化活性和选择性,异丙醇分解反应的结果表明,Zn,W,Cu的加入,增加了催化剂的脱氢中心强度,Cr,Ni的加入,增加了催化剂的酸中心强度,酸中心和脱氢中心的加强有利于甲烷芳构化反应。  相似文献   

7.
用高硅含磷五员环沸石分子筛(商品代号HZRP-1)作为载体,制备了Mo/HZRP-1催化剂.与Mo/HZSM-5相比,Mo/HZRP-1对甲烷无氧脱氢芳构化反应也表现出较好的催化性能.实验过程中,在反应气中添加N2作为内标物,给出包括甲烷在Mo/HZRP-1上的结焦量、转化率及各产物选择性在内的总碳物料平衡计算结果.考察了不同Mo担载量对催化剂性能和积炭行为的影响;重点考察了不同温度焙烧后20%Mo/HZRP-1催化剂的性能和积炭行为.在反应的初始阶段,6%Mo/HZRP-1表现出很高的活性:反应进行30 min时,甲烷转化率为11%,芳烃选择性达81%,而催化剂的结焦选择性仅为12%.BET,NH3-TPD和催化反应等表征结果表明:Mo物种的数量和状态,分子筛的酸强度和酸量以及分子筛的孔道结构是决定甲烷无氧脱氢芳构化反应性能和积炭行为的关键因素.  相似文献   

8.
Re/HZSM-5体系上的甲烷无氧芳构化反应   总被引:1,自引:0,他引:1  
 与Mo/HZSM-5相比,Re/HZSM-5也是较好的甲烷无氧芳构化催\r\n化剂,其初活性较高,但随着反应的进行,催化剂失活的速率较快.通\r\n过NH3-TPD,H2-TPR和MASNMR等手段,对催化剂的酸性和分子筛骨架\r\n铝的变化以及铼物种的还原性能进行了研究.结果表明,催化剂酸性的\r\n在反应中起着重要的作用,但不同铼担载量的催化剂酸性的变化比较复\r\n杂,不同于Mo/HZSM-5体系.总的来看,并不是酸性越强或酸量越多\r\n,催化剂的催化性能就越好;催化剂的酸性和酸量都有一个最佳值.担\r\n载铼物种后,铼物种可与分子筛的骨架铝发生强烈的相互作用,最终导\r\n致骨架脱铝.Re/HZSM-5催化剂具有较高的低温活性,在较低温度下\r\n可被还原性气氛还原,且还原后的活性物种单一.  相似文献   

9.
Mo/HZSM-5催化剂上丙烷的芳构化反应   总被引:3,自引:0,他引:3  
 采用浸渍法、机械混合法和水热法制备了Mo/HZSM-5分子筛催化剂,考察了Mo含量和在线反应时间对丙烷芳构化反应的影响,并以IR,XRD,NH3-TPD和XPS等表征手段研究了Mo物种对HZSM-5分子筛结构和酸性的影响.结果表明,水热法制备的催化剂丙烷芳构化活性最高,且具有较高的活性稳定性,在焙烧过程中Mo物种易在HZSM-5分子筛上分散,且比浸渍法更多地进入分子筛孔道内,并与分子筛产生强相互作用,使B酸中心减少,L酸中心增多.而浸渍法制备的催化剂的芳构化性能比相应的水热法催化剂低,活性稳定性较差,经焙烧后在分子筛外部形成结晶,进入孔道内的数量较少,对分子筛酸性的影响也低于水热法催化剂.  相似文献   

10.
 甲烷在Co-Mo/HZSM-5催化剂上进行无氧芳构化反应的评价结果表明,Co的添加大大提高了Mo/HZSM-5催化剂在反应过程中的稳定性.BET实验证明,反应后的积炭对Co-Mo/HZSM-5催化剂孔道堵塞的程度较小.对积炭催化剂进行的一系列程序升温表面反应(如TPH,TPCO2和TPO)结果表明,TPO谱上有两个峰温明显不同的烧炭峰,Co的添加明显抑制了高温积炭的生成.H2主要与高温积炭发生反应,这部分积炭是催化剂失活的主要原因;CO2对低温积炭的影响则尤为明显.TEM结果表明,积炭催化剂上存在丝状积炭物种.碳丝不能与H2反应,但能被CO2除去.Co的添加促进了丝状积炭物种的生成,碳丝并不是导致催化剂失活的因素.  相似文献   

11.
HZSM-5结晶度和晶粒度对甲烷无氧芳构化催化剂性能的影响   总被引:2,自引:0,他引:2  
使用高能球磨机通过研磨法制备了Mo/HZSM-5催化剂,对不同球磨时间下的催化剂结构进行了表征,并考察了其催化甲烷芳构化性能。结果表明,球磨使HZSM-5分子筛的粒度变小,且使Mo与骨架发生了同晶置换,导致ZSM-5骨架破坏;球磨时间越长,结晶度越低,其催化甲烷芳构化活性和苯选择性越差。因此,较高的结晶度和较大的晶粒度对甲烷的无氧芳构化反应更有利。  相似文献   

12.
预处理条件对Mo/HZSM-5和Mo-Zn/HZSM-5甲烷芳构化性能的影响   总被引:2,自引:0,他引:2  
甲烷无氧芳构化 ,具有选择性高、技术简单及产物易分离等特点 ,已引起人们的广泛关注 [1,2 ] .Mo/HZSM- 5是芳构化的良好催化剂 ,为了探讨预处理条件对反应的影响 ,我们对不同预处理条件下的 Mo/HZSM- 5及 Zn改性的 Mo/HZSM- 5催化剂上的甲烷无氧芳构化反应进行了研究 ,并以热重法对催化剂的稳定性进行了表征 .1实验部分1 .1原料和试剂钼酸铵 ( A.R.级 ) ,乙酸锌 ( A.R.级 ) ,铵型ZSM- 5分子筛 (硅铝比为 5 0~ 70 ) .1 .2催化剂制备铵型 ZSM- 5分子筛于 81 3K、空气气氛下焙烧3h,即成 HZSM- 5分子筛 .以一定浓度的钼酸铵溶液…  相似文献   

13.
硅烷化处理对Mo/HZSM-5催化剂上甲烷脱氢芳构化活性的影响   总被引:7,自引:0,他引:7  
 结合催化剂的活性评价及固体高分辨核磁共振谱、X射线光电子能谱和X射线荧光光谱和热重等技术,考察了硅烷化处理对Mo/HZSM-5催化剂上甲烷脱氢芳构化活性的影响. 结果表明,采用大分子有机硅烷对HZSM-5分子筛进行硅烷化处理,除去了分子筛外表面的酸性位,并使分子筛本身发生了脱铝. 硅烷化处理使Mo/HZSM-5催化剂在进行甲烷脱氢芳构化反应时催化剂上总的积碳量明显减少,从而提高了催化剂的活性.  相似文献   

14.
Co-Mo/HZSM-5甲烷无氧芳构化催化剂上的积炭   总被引:3,自引:1,他引:2  
 考察了Co-Mo/HZSM-5催化剂对甲烷芳构化反应的催化性能及催化剂上的积炭.采用碳数平衡计算法和TG法得出的平均积炭速率比较接近,在不同空速下,360min内,催化剂上的积炭量都接近5%.对烧炭TG曲线的分析结果表明,积炭量约为5%时,积炭能分散于分子筛表面.在高空速下,积炭容易沉积在分子筛的外表面;在低空速下,积炭容易沉积在分子筛的内表面.在空速3000ml/(g·h)下积炭时,其烧炭动力学过程符合一级反应过程,烧炭活化能为140.8kJ/mol.  相似文献   

15.
Co改性Mo/HZSM-5催化剂上甲烷无氧芳构化反应研究   总被引:6,自引:0,他引:6  
田丙伦  刘红梅 《分子催化》2000,14(3):200-204
甲烷无氧芳构化催化剂Mo/HZSM-5上担载第二组分Co后,提高了催化剂的稳定性,但加快了催化剂上的积炭速率,且积炭速率随Co添加量的增加而提高,因而认为催化剂的失活速率与积炭速率并不成顺比关系,研究认为,一方面,Co的添加增加了催化剂的脱氢能力,使更多的中间产物乙烯进一步脱氢转化成芳烃或积炭,另一方面,增加了催化剂的抗积炭能力。并认为部分积炭可能对提高催化剂的稳定性起到一定的作用,空速实验表明,  相似文献   

16.
甲烷在钼/含磷五元环沸石催化剂上的无氧芳构化   总被引:2,自引:0,他引:2  
舒玉瑛  舒兴田 《分子催化》1997,11(3):173-179
报道甲烷在无氧条件下,在一种不同于Mo/HZSM-5催化剂的钼/含磷五元环沸石催化剂上催化转化制高级烃类(苯等)的新反应,实验表明,在钼/含磷五元环沸石催化刘,当Mo浸渍的重分数为20%时,甲烷具有最佳反应活性,其转化率为9.23%,工选择怀为92.745,用BET、XRD、NH3-TPD和TPRcMo  相似文献   

17.
采用FT-IR和程序升温热谱技术研究了Mo/HZSM-5催化剂的制备过程.结果表明Mo/HZSM-5样品在合适的温度下焙烧一定时间,Mo物种与HZSM-5分子筛的酸中心(主要是强酸中心)起作用,并且一部分Mo物种会迁移到分子筛孔道内.在外表面的Mo物种和在孔道内强酸中心作用的Mo物种,可能是对甲烷活化起作用的  相似文献   

18.
ACo_2O_4/HZSM-5催化剂上N_2O的直接分解   总被引:1,自引:0,他引:1  
分别采用柠檬酸络合燃烧法和低温络合浸渍法制备尖晶石型复合金属氧化物催化剂ACo2O4(A=Mg,Ni,Zn)和分子筛负载尖晶石型复合金属氧化物催化剂ACo2O4/HZSM-5(A=Mg,Fe,Ni,Cu,Zn,Zr,La).采用X射线衍射(XRD)、氨程序升温脱附(NH3-TPD)、扫描电子显微镜(SEM)和X射线能谱(EDS)等手段对催化剂进行表征,并在固定床微型反应器中评价其催化分解N2O活性.实验结果表明,A位离子种类影响ACo2O4/HZSM-5催化剂活性,以Ni、Fe、Zr或La为A位离子时,催化剂的活性较好,N2O分解温度低.ACo2O4/HZSM-5催化剂的活性高于ACo2O4尖晶石型复合氧化物,一方面是ACo2O4在分子筛HZSM-5载体上高度分散,使其以超细颗粒形态存在,另一方面ACo2O4/HZSM-5催化剂具有适宜的酸性,可提高催化剂的活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号