首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright. Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright.   相似文献   

2.
表面等离子体共振(SPR)技术是20世纪90年代发展起来的一种新型技术,应用SPR原理可检测生物传感芯片上配位体与分析物之间的相互作用情况,在生命科学、医疗检测、药物筛选、食品检测及环境监测等领域具有广泛的应用需求.SPR技术可与免疫传感器结合,利用抗原抗体的特异性反应可用于各种蛋白质抗原的检测.本文重点总结了SPR免疫传感器在食品及医疗领域蛋白质检测的应用,综述了近年来SPR免疫传感技术在这该领域的研究热点及进展.  相似文献   

3.
表面等离子共振(SPR)近年来迅速发展为用于分析生物分子相互作用的一项技术.该技术无需标记、特异性强、灵敏度高、样品用量小,可实现在线连续实时检测.目前SPR已被广泛应用于免疫学、蛋白质组学、药物筛选、细胞信号转导、受体/配体垂钓等领域.该文阐述了基于表面等离子体共振技术生物传感器的基本原理和技术流程,综述了SPR在蛋白质-蛋白质相互作用动力学研究、蛋白质结构及功能研究、蛋白质突变和碎片分析、信号转导中的应用以及SPR在蛋白质-蛋白质相互作用研究中的多项关键技术.指出SPR通过与光谱、电化学等多技术联用后,可以获得更加详实的信息.  相似文献   

4.
In this study, we demonstrate a simple method to fabricate surface plasmon resonance (SPR) imaging microarrays using polymer micropatterns. The use of a micrometer-scale polymeric optical screen (microPOS) passivates the region deposited with polymer by completely removing SPR signals or by saturating the SPR signal far beyond the detection range of SPR imaging. Two schemes were suggested to create a surface microPOS by either micropatterning a thick insulating layer before deposition of a metal layer (complete removal of SPR) or after deposition of a metal layer (saturation of SPR signal). The two schemes were successfully applied for the imaging of biological adsorption with a high imaging resolution of approximately 100 microm/pattern and 10 microm separation. The validity of the system was verified with a biotin-streptavidin system as a model for the systematic binding of biomolecules. Further, binding of prostate-specific antigen (PSA) onto the anti-PSA SPR microarray was demonstrated as a useful method for detecting a cancer marker.  相似文献   

5.
We demonstrate the quantitative characterization of DNA-DNA and DNA-drug interactions by angle-resolved surface plasmon resonance (SPR) imaging. Combining the angle-scanning capabilities of traditional SPR with the spatial definition capabilities of imaging, we directly measure DNA and drug surface coverages and kinetics simultaneously for multiple patterned spots. We find excellent agreement of DNA-DNA hybridization kinetics and thermodynamics measured by both the imaging system and traditional SPR. Instrument response and sensitivity is further demonstrated by successful measurement of association and dissociation kinetics of actinomycin-D binding to a low-density doubled-stranded DNA binding sequence. Without independent calibration, analysis of angle-resolved SPR imaging data yields 2.9 +/- 0.1 drugs per duplex at saturation coverage, consistent with all available duplex binding sites being occupied.  相似文献   

6.
Surface plasmon resonance (SPR) is a label-free spectroscopic technique that is highly sensitive to various surface reactions. Incorporating SPR into electrochemical measurements has emerged as a powerful method to study both faradaic and non-faradaic processes. SPR microscopy (SPRM) integrates an optical microscope into SPR detection, which further offers high throughput detection and spatially resolved information at an electrode surface and thus, has attracted attention especially in single entity electrochemical studies. In this review, the progress in the studies of electrochemical interfaces by SPR and SPRM during the past two years will be discussed.  相似文献   

7.
报道了一种用于原位探测水中苯并芘的彩色表面等离子体共振成像(SPRI)传感器,该传感器既能提供直观的图像信息,又能借助色相算法定量分析待测物质的浓度及其吸附/脱附过程。首先利用自制的波长-图像同步检测型SPR传感器测试了裸金薄膜芯片在不同入射角下的共振波长和共振图像,然后利用色相算法建立了SPR共振波长与图像色相的依赖关系,基于该依赖关系获得了SPR传感器最佳色相灵敏度对应的起始共振波长约为650 nm;另一方面,制备了聚四氟乙烯涂覆的SPR传感芯片,基于聚四氟乙烯膜对水中苯并芘的可逆富集作用实现了苯并芘的原位快速探测。实验取得以下4个结果:(1)在20-100 nmol?L-1浓度范围内彩色SPR图像的平均色相值随着苯并芘浓度的升高线性减小;(2)对100 nmol?L-1的苯并芘的响应和恢复时间分别约为7和5 s;(3)由于聚四氟乙烯膜的厚度大于SPR消逝场穿透深度,检测结果不受溶液折射率影响;(4)在聚四氟乙烯敏感膜厚度较小且不均匀的情况下,传感器容许获取敏感膜的不同厚度区域对苯并芘的色相灵敏度。实验结果有力地证明了这种彩色SPR图像传感器在生化物质检测中具有良好的应用前景。  相似文献   

8.
包宇  毛燕  王伟  李正刚  牛利 《电化学》2013,19(1):17-28
表面等离子体共振(Surface Plasmon Resonance,SPR)技术是利用金属薄膜光学耦合产生的物理光学现象建立的一种非常灵敏的光学分析手段. 近年发展的电化学表面等离子体共振(Electrochemical Surface Plasmon Resonance,EC-SPR)是将时间分辨表面等离子体共振光谱技术与电化学方法联用的一种新技术. 本文介绍了SPR和EC-SPR的基本原理,并重点阐述了时间分辨SPR光谱技术与电化学方法联用及应用,该技术已广泛地应用于反应动态过程研究、生物化学传感器、电极/溶液界面的表征、动力学常数的测定以及生物分子相互作用等领域.  相似文献   

9.
A new method to fabricate supported bilayer membrane (SBM) arrays for surface plasmon resonance (SPR) imaging analysis is demonstrated in this work. Thin silicate films are produced on gold SPR substrates using layer-by-layer assembly, followed by calcination. Etching into the glassified substrates using photolithographic techniques generates nanowells of desirable size and depth. Atomic force microscopy and SPR imaging analysis show that the features are well-defined, and the etching process appears to have a surface smoothing effect. After the wells are oxidized with strong acid, vesicles spontaneously fuse onto them to form supported membranes with a high degree of lateral mobility. Fluorescence recovery after photobleaching measurements yielded a diffusion coefficient of 1.1 mum2/s. To demonstrate the feasibility for high-throughput receptor-ligand interaction analysis, binding of cholera toxin (CT) to SBM arrays containing 5 mol % ganglioside GM1 receptor was carried out with SPR imaging. The results showed excellent well-to-well reproducibility (8% RSD at 60 nM CT) and marked detection sensitivity.  相似文献   

10.
In recent years the interest in tools for investigating carbohydrate–protein (CPI) and carbohydrate‐carbohydrate interactions (CCI) has increased significantly. For the investigation of CPI and CCI, several techniques employing different linking methods are available. Surface plasmon resonance (SPR) imaging is a most appropriate tool for analyzing the formation of self‐assembled monolayers (SAM) of carbohydrate derivatives, which can mimic the glycocalyx. In contrast to the SPR imaging methods used previously to analyze CPI and CCI, the novel approach reported herein allows a facile and rapid synthesis of linker spacers and carbohydrate derivatives and enhances the binding event by controlling the amount and orientation of ligand. For immobilization on biorepulsive amino‐functionalized SPR chips by reductive amination, diverse aldehyde‐functionalized glycan structures (glucose, galactose, mannose, glucosamine, cellobiose, lactose, and lactosamine) have been synthesized in several facile steps that include olefin metathesis. Effective immobilization and the first binding studies are presented for the lectin concanavalin A.  相似文献   

11.
Liu X  Song D  Zhang Q  Tian Y  Zhang H 《Talanta》2004,62(4):773-779
Surface plasmon resonance (SPR) has been successfully applied for the simple, rapid, and label-free assay of various biomolecules. This assay evaluates a novel wavelength modulation SPR biosensor for the detection of tetanus toxin. The wavelength modulation SPR biosensor is designed based on fixing the incident angle of light and measuring the reflected intensities in the resonance wavelength range spanning 400-800 nm simultaneously. Tetanus toxin (TeNT), one of the most potent toxins known, is synthesized as a 150 kDa single polypeptide chain. The SPR biosensor has been shown to be capable of directly detecting concentration of tetanus toxin as low as 0.028 Lf ml−1. Under selected experimental conditions, the SPR biosensor has a good reproducibility, sensitivity and reversibility. The results illustrate how wavelength modulation SPR biosensor can be used to detect biomolecular interactions.  相似文献   

12.
We developed a biosensor based on the surface plasmon resonance (SPR) method for the study of the binding kinetics and detection of human cellular prions (PrPC) using DNA aptamers as bioreceptors. The biosensor was formed by immobilization of various biotinylated DNA aptamers on a surface of conducting polypyrrole modified by streptavidin. We demonstrated that PrPC interaction with DNA aptamers could be followed by measuring the variation of the resonance angle. This was studied using DNA aptamers of various configurations, including conventional single-stranded aptamers that contained a rigid double-stranded supporting part and aptamer dimers containing two binding sites. The kinetic constants determined by the SPR method suggest strong interaction of PrPC with various DNA aptamers depending on their configuration. SPR aptasensors have a high selectivity to PrPC and were regenerable by a brief wash in 0.1 M NaOH. The best limit of detection (4 nM) has been achieved with this biosensor based on DNA aptamers with one binding site but containing a double-stranded supporting part.
Fig
Aptasensors for kinetic evaluation and detection of prions by SPR  相似文献   

13.
An in vitro, rapid, and quantitative cell-based assay is needed to predict the efficacy of cancer drugs in individual patients, because a cancer patient may have unconventional aspects of tumor development. Here we report a rapid and label-free quantitative method for verifying apoptosis in living cancer cells cultured on a sensor chip with a newly developed high-precision surface plasmon resonance (SPR) sensor. The time-course cell reaction was monitored as the SPR angle change rate for 5 min during a 35-min cell culture of pancreatic cancer lines with a drug. The time-course cell reaction was significantly related to cell viability counted after 48 h as assessed by caspase-3 activity assay of apoptosis. Furthermore, the detected SPR signal was derived from the decrease in inner mitochondrial membrane potential. The results obtained are universally valid for various cancer drugs mediating apoptosis through different cell-signaling pathways and even for combined use in various pancreatic cancer cell lines. This system can be applied in a clinical setting to evaluate the personal therapeutic potential of drugs including pharmacodynamic interactions.  相似文献   

14.
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol–protein interactions.  相似文献   

15.
光学影像技术是法庭科学物证检验分析的重要技术手段,具有无损、原位、快速等优势。近年来,随着光学影像技术的不断发展,一些新技术、新方法不断被引入法庭科学领域并付诸应用。光学相干层析技术(简称OCT技术)是一种光学断层成像技术,具有无损、高分辨、快速、断层成像的特点,特别是其可以无损地得到材料或生物组织内部的结构信息,突破了传统二维成像只能进行物质表面分析的局限,因此可成为一种很有前景的新型法庭科学光学影像技术。本文首先介绍了自主搭建的一套三维OCT成像系统,并着重介绍了基于该系统应用于法庭科学油漆物证检验、胶带指纹显现和毛囊特征分析等方面的研究。结果表明,OCT技术非常适合用于法庭科学物证检验分析,作为其他检验的先导技术手段,获取样品内部信息,提取新型光学特征参数。由于其采用光纤化技术,还有望实现便携化、小型化,在现场勘查中开展相关应用。  相似文献   

16.
May LM  Russell DA 《The Analyst》2002,127(12):1589-1595
Recently there has been considerable interest in using surface plasmon resonance (SPR) for the measurement of conformational changes of immobilized biomolecules that are induced by an exogenous analyte. While a number of studies have shown the analytical utility of such measurements, there has been no report which characterizes the specific secondary structure that actuates the change in SPR signal. The use of SPR to indicate the type of secondary structure present in two immobilized polypeptides, poly-L-lysine (PL) and poly-L-glutamic acid (PGA), and a globular protein, concanavalin A (Con A) is described in this report. The PL, PGA and Con A were modified with N-succinimidyl 3-(2-pyridyldithiol) propionate (SPDP) to introduce disulfide groups to facilitate the attachment onto gold-coated surfaces via self-assembly. Ethanol and 2,2,2-trifluoroethanol (TFE) were used to induce changes in the secondary structure of the immobilized polypeptides and the protein respectively. Using both circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies, it has been demonstrated that it is possible to correlate the signal changes observed in SPR to the secondary conformation of the biomolecule. Both CD and FTIR showed that a decrease in SPR signal corresponded to a high content of beta, turn or unordered structures while an increase corresponded to a high alpha-helical content. The sensitivity of the SPR technique is comparable to that obtained in solution with CD and FTIR spectroscopies. These results are the first demonstration that SPR can be used to characterize secondary structures. There is potential, therefore, for SPR to be used as a technique to study secondary conformational changes of immobilized polypeptides and proteins.  相似文献   

17.
Surface plasmon resonance   总被引:1,自引:0,他引:1  
During last decade there has been significant progress in the development of analytical techniques for evaluation of receptor-ligand iteraction. Surface plasmon resonance (SPR)-based optical biosensors are now being used extensively to defined the kinetics of wide variety of macromolecular interactions and high- and low-affinity small molecule interactions. The experimental design data analysis methods are evolving along with widespread applications in ligand fishing, microbiology, virology, host-pathogen interaction, epitope mapping and protein-, cell-, membrane-, nucleic acid-protein interactions. SPR based biosensors have strong impact on basic and applied research significantly. This brief review describes the SPR technology and few of its applications in relation to receptor-ligand interaction that has brought significant change in the methodology, analysis, interpretation, and application of the SPR technology.  相似文献   

18.
A new immunoassay for continuously monitoring atrazine in water has been developed. It uses a portable biosensor platform based on surface plasmon resonance (SPR) technology. This immunoassay is based on the binding inhibition format with purified polyclonal antibodies, with the analyte derivative covalently immobilized on a gold sensor surface. An alkanethiol self-assembled monolayer (SAM) was formed on the gold-coated sensor surface in order to obtain a reusable sensing surface. The low detection limit for the optimized assay, calculated as the concentration that produces a 10% decrease in the blank signal, is 20 ng/L. A complete assay cycle, including regeneration, is accomplished in 25 min. Additionally, a study of the matrix effects of different types of wastewater was performed. All measurements were carried out with the SPR sensor system (β-SPR) commercialised by the company Sensia, S.L. (Spain). The small size and low response time of the β-SPR platform would allow it to be used in real contaminated locations. The immunosensor was evaluated and validated by measuring the atrazine content of 26 natural samples collected from Ebro River. Solid-phase extraction followed by gas chromatography coupled to mass spectrometric detection (SPE–GC–MS) was used to validate the new immunoassay.  相似文献   

19.
《中国化学快报》2021,32(8):2369-2379
Living-cell imaging demands high specificity,sensitivity,and minimal background interference to the targets of interest.However,developing a desirable imaging probe that can possess all the above features is still challenging.The bioorthogonal surface-enhanced Raman scattering(SERS) imaging has been recently emerged through utilizing Raman reporters with characteristic peaks in Raman-silent region of cells(1800-2800 cm~(-1)),which opens a revolutionary avenue for living-cell imaging with multiplexing capability.In this review,we focus on the recent advances in the technology development and the biological and biomedical applications of the living-cell bioorthogonal SERS imaging technique.After introduction of fundamental principles for bioorthogonal tag or label,we present applications for visualization of various intracellular components and environment including proteins,nucleic acids,lipids,pH and hypoxia,even for cancer diagnosis in tissue samples.Then,various bioorthogonal SERS imaging-guided thera py strategies have been discussed such as photothera py and surge ry.In conclusion,this strategy has great potential to be a flexible and robust tool for visualization detection and diseases diagnosis.  相似文献   

20.
This paper details the first use of a self-folding deep cavitand on a gold surface. A sulfide-footed deep, self-folding cavitand has been synthesized, and its attachment to a cleaned gold surface studied by electrochemical and SPR methods. Complete monolayer formation is possible if the cavitand folding is templated by noncovalent binding of choline or by addition of space-filling thiols to cover any gaps in the cavitand adsorption layer. The cavitand is capable of binding trimethylammonium-tagged guests from an aqueous medium and can be deposited in 2 × 2 microarrays on the surface for characterization by SPR imaging techniques. When biotin-labeled guests are used, the cavitand:guest construct can recognize and immobilize streptavidin proteins from aqueous solution, acting as an effective supramolecular biosensor for monitoring protein recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号