首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The helix formation dynamics of poly-L-glutamic acids (PGAs) were observed by the microsecond-resolved Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The helix formation of 34-residue PGA from random coil at pH (or pD for FTIR) 8.0 was initiated by a pH jump to 4.9 using the rapid solution mixer whose mixing dead time is 50 micros. The amide I' line in the time-resolved FTIR spectra exhibited the fast (<100 micros) increase of the total helical content. The time-resolved CD spectra of the same process also showed the fast (<150 micros) formation of short helical segments (5 +/- 1 residues), which was followed by the slower (<1 ms) elongation of the short helices to longer helices (>10 residues). Similar dynamics were observed for the same pH jump of approximately 190-residue PGA, although there were additional steps that made the helix formation of approximately 190-residue PGA more complex. The observed multistep helix formation is likely caused by the strong hydrogen-bonding interactions between the protonated side chains of PGAs.  相似文献   

2.
Chen LY  Wu MC  Chou MT  Kao LA  Chen SJ  Chen WY 《Talanta》2005,67(4):862-867
A real-time and labeling-free surface plasmon resonance (SPR) sensor was used to monitor the conformational changes of immobilized globule proteins (RNase A and lysozyme) in chemical unfolding and refolding. The effects of chemical denaturants on the protein structures were investigated. The methodology in protein conformational study on the solid surface is refined through the theoretic calculations and the conformational information of native/denatured proteins in solution. Additionally, our observation illustrates that the ambient buffer solution is merit to influence the refractive index of immobilized protein films and directly be observed from the SPR resonance angle shifts.  相似文献   

3.
The conformational changes of bovine serum albumin (BSA) in the albumin:gold nanoparticle bioconjugates were investigated in detail by various spectroscopic techniques including UV-vis absorption, fluorescence, circular dichroism, and Fourier transform infrared spectroscopies. Our studies suggested that albumin in the bioconjugates that was prepared by the common adsorption method underwent substantial conformational changes at both secondary and tertiary structure levels. BSA was found to adopt a more flexible conformational state on the boundary surface of gold nanoparticles as a result of the conformational changes in the bioconjugates. The conformational changes at pH 3.8, 7.0, and 9.0, which corresponded to different isomeric forms of albumin, were investigated, respectively, to probe the pH effect on the conformational changes of BSA in the bioconjugates. The results showed that the pH of the medium influenced the changes greatly and that fluorescence and circular dichroism studies further indicated that the changes were larger at higher pH.  相似文献   

4.
FTIR and Raman spectroscopies have been used to characterize the structure and conformational order of dimethylchlorooctadecylsilane (DOS) covalently bonded to ultrathin silica films supported on Ag substrates. Ultrathin silica films of ca. 30 Å thickness prepared from sol-gel methods are immobilized on Ag surfaces modified with a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane (3MPT). This layered structure provides a unique opportunity for acquiring complementary spectral data from both FTIR and Raman spectroscopies, which are useful in elucidating alkylsilane conformation pertaining to stationary phases for reversed-phase liquid chromatography (RPLC). Characterization of octadecyltrichlorosilane (OTS) layers on thin silica films of ca. 800 Å thickness on 3MPT-modified Ag surfaces has been reported previously. Differences between the ultrathin silica films used in this study and the thin silica films used in this previous study are considered. The results from both FTIR and Raman spectroscopy presented here suggest that bonded DOS alkyl chains are in a disordered, liquid-like state with close to monolayer surface coverage.  相似文献   

5.
FTIR and Raman spectroscopies have been used to characterize the structure and conformational order of dimethylchlorooctadecylsilane (DOS) covalently bonded to ultrathin silica films supported on Ag substrates. Ultrathin silica films of ca. 30 A thickness prepared from sol-gel methods are immobilized on Ag surfaces modified with a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane (3MPT). This layered structure provides a unique opportunity for acquiring complementary spectral data from both FTIR and Raman spectroscopies, which are useful in elucidating alkylsilane conformation pertaining to stationary phases for reversed-phase liquid chromatography (RPLC). Characterization of octadecyltrichlorosilane (OTS) layers on thin silica films of ca. 800 A thickness on 3MPT-modified Ag surfaces has been reported previously. Differences between the ultrathin silica films used in this study and the thin silica films used in this previous study are considered. The results from both FTIR and Raman spectroscopy presented here suggest that bonded DOS alkyl chains are in a disordered, liquid-like state with close to monolayer surface coverage.  相似文献   

6.
The conformational dynamics of poly(acrylic acid) induced by pH change is reported here. Poly(acrylic acid) immobilized on gold surface was exposed to pH changes, and the conformational changes thus induced were followed in real time using surface plasmon resonance spectroscopy. The temporal profile of the stretching-coiling phenomenon showed a minimum point, which was proposed to be arising due to the contradictory behavior of two different property changes in the polymeric system. Normally surface plasmon resonance (SPR) response would be a convoluted effect of the thickness and refractive index changes, but the behavior observed here, where the SPR response is predominantly governed by either one of the two, is unique and to the author's knowledge is a feature that is observed for the first time. Analysis of the kinetics of the angle change revealed that it takes longer for the polymer to stretch than it takes for it to collapse, with the kinetic rate constants varying by at least an order of magnitude. The SPR angle change as well as the kinetic constants increased linearly with molecular weight. Effect of Ca2+ was studied, and it was found that the polymer was locked in its conformation due to the binding of the multivalent cations.  相似文献   

7.
Jianlong Wang 《Talanta》2009,79(1):72-76
Features of Au NPs-aptamer conjugates as a powerful competitive reagent to substitute antibody in enhancing surface plasmon resonance spectroscopy (SPR) signal for the detection of small molecule are explored for the first time. In order to evaluate the sensing ability of Au NPs-aptamer conjugates as a competitive reagent, a novel SPR sensor based on indirect competitive inhibition assay (ICIA) for the detection of adenosine is constructed by employing the competitive reaction between antiadenosine aptamer with adenosine and antiadenosine aptamer with its partial complementary ss-DNA. The partial complementary ss-DNA of antiadenosine aptamer is firstly immobilized on SPR gold film as sensing surface. When the Au NPs-antiadenosine aptamer conjugates solution is added to SPR cell in the absence of adenosine, Au NPs-antiadenosine aptamer conjugates is adsorbed to SPR sensor by the DNA hybridization reaction, and results in a large change of SPR signal. However, the change of SPR signal is decreased when the mixing solution of adenosine with Au NPs-antiadenosine aptamer conjugates is added. This is because adenosine reacts with antiadenosine aptamer in Au NPs-antiadenosine aptamer conjugates and changes its structure from ss-DNA to tertiary structure, which cannot hybridize with its partial complementary ss-DNA immobilized on SPR gold surface. Based on this principle, a SPR sensor for indirect detection of adenosine can be developed. The experimental results confirm that the SPR sensor possesses a good sensitivity and a high selectivity for adenosine, which indirectly confirms that Au NPs-aptamer conjugates is a powerful competitive reagent. More significantly, it can be used to develop other SPR sensors based on ICIA to detect different targets by changing the corresponding type of aptamer in Au NPs-aptamer conjugates.  相似文献   

8.
A labeling-free surface plasmon resonance (SPR) sensor technique was used to monitor the conformational changes of immobilized globular proteins (RNase A and Lysozyme) in chemical unfolding and refolding. The conformational changes of proteins at solid/liquid interface are characterized as two-state transformation (S-shaped) curves through matrix-effect correction and theoretic estimation. By extrapolation with a Santoro-Bolen equation, the SPR results for both reductive immobilized proteins are estimated to 1.9 kcal mole−1 global free energy (ΔGU) in urea-induced unfolding. But the ΔGU for RNase A and Lysozyme in GdmCl-induced unfolding are 1.5 and 2.15 kcal mole−1, respectively. The disagreement in free energy is partially accounted for by the differences of intra-molecular interactions and immobilization.  相似文献   

9.
A new class of surface-immobilized protein nanomachines can be reversibly actuated by cycling the solution pH between 2.5 and 12.3, which induces a conformational change, thereby modulating the thickness of superoxide dismutase (SOD1) tethered to the Au thin film. By placing Au nanoparticles (AuNP) atop the immobilized SOD1 by means of a gold-thiol assembly, the nanoscale motion of SOD1 at the interface produces mechanical work to lift and then lower the AuNP from the Au substrate by a distance of ca. 3 nm and transduces this motion into an easily measurable reflectivity change in the surface plasmon resonance (SPR) spectrum. As-made supported conjugate consisting of SOD1 and AuNP is quite robust and stable, and its operation in response to pH variations, which mirrors the conformational changes of responsive SOD1 at the interface, is found to be highly reversible and reproducible. This is the first demonstration of the development of novel solid-state sensors and/or switching devices based on substrate-bound protein conformational changes and AuNP enhanced SPR spectroscopy.  相似文献   

10.
Cyclic voltammetry (CV) has been combined with surface plasmon resonance (SPR) for probing electrochemical deposition and redox‐initiated film reorganization and conformational changes. However, the varying potential during CV scans leads to unwanted SPR background changes and complicates interpretation of SPR signals. In this work, we show that, when SPR is coupled with CV, the background correction for underpotential deposition of copper and electropolymerization of aniline is either inaccurate or difficult to perform. For accurate thickness measurements of electrodeposited films, potential‐step (PS) chronoamperometry is a method of choice to combine with SPR. The theory that interprets double‐layer charging is used to explain the advantage of PS chronoamperometry over CV in quantifying the thickness of electrodeposited thin films. The influence of the double‐layer charging on the potential‐induced SPR signal change was analyzed, and the results were used to optimize experimental parameters for PS‐SPR. Overall, PS‐SPR is easier to operate, simpler in data interpretation, and more accurate for the film thickness measurement.  相似文献   

11.
In this paper, we first report a novel biosensor for the detection of paraoxon based on (CdSe)ZnS core-shell quantum dots (QDs) and an organophosphorus hydrolase (OPH) bioconjugate. The OPH was coupled to (CdSe)ZnS core-shell QDs through electrostatic interaction between negatively charged QDs surfaces and the positively charged protein side chain and ending groups (-NH2). Circular dichroism (CD) spectroscopy showed no significant change in the secondary structure of OPH after the bioconjugation, which indicates that the activity of OPH was preserved. Detectable secondary structure changes were observed by CD spectroscopy when the OPH/QDs bioconjugate was exposed to organophosphorus compounds such as paraoxon. Photoluminescence (PL) spectroscopic study showed that the PL intensity of the OPH/QDs bioconjugate was quenched in the presence of paraoxon. The overall quenching percentage as a function of paraoxon concentration matched very well with the Michaelis-Menten equation. This result indicated that the quenching of PL intensity was caused by the conformational change in the enzyme, which is confirmed by CD measurements. The detection limit of paraoxon concentration using OPH/QDs bioconjugate was about 10(-8) M. Although increasing the OPH molar ratio in the bioconjugates will slightly increase the sensitivity of biosensor, no further increase of sensitivity was achieved when the molar ratio of OPH to QDs was greater than 20 because the surface of QDs was saturated by OPH. These properties make the OPH/QDs bioconjugate a promising biosensor for the detection of organophosphorus compounds.  相似文献   

12.
The secondary structure of a water treatment coagulant protein extracted from Moringa oleifera (MO) seeds has been investigated by Fourier transform infrared spectroscopy (FTIR) in the dried state, and by circular dichroism (CD) spectroscopy. The FTIR and CD spectra indicate that the secondary structure of the protein is dominated by alpha-helix. The FTIR spectrum recorded two distinct and strong absorption bands at 1656 cm(-1) and 1542 cm(-1), in the usual range of absorption of helices of proteins. The CD spectrum showed the shape of mainly alpha-helical secondary structure (estimated to be 58+/-4%) characteristic of negative ellipticity bands near 222 nm and 208 nm and a positive band at 192 nm. The beta-sheet structure composition was estimated to be 10+/-3% whereas unordered structures were around 33%. Changes in solution pH affected the protein secondary structure significantly only at pH values above 10, as indicated by CD spectra, whereas ionic strength had minimal effect. CD data also showed that sodium dodecyl sulphate (SDS) interacts with the coagulant protein and modifies the protein conformation. The surfactant-induced conformational change of the coagulant protein was confirmed by quenching of tryptophan fluorescence of the protein.  相似文献   

13.
Interactions between poly alpha- L-glutamic acid (PGA) and metal ions Cd(2+), Co(2+) were studied by direct current polarography. The diffusion currents of these ions decreased sharply in the presence of PGA in the pH region from 5.0 through neutral. A corresponding increase in the helix content of the PGA-metal ion complex was revealed by CD measurements on the same solutions. Helix contents determined by polarography were in good agreement with those by CD in the neutral pH region. On the contrary, the decrease of current in lower acidic pH regions was independent of helix formation and suggested that metal ions coordinate to sporadically-dissociated carboxylate groups to cause aggregation of the intra and/or inter polymer chains. The diffusion current of the ions, therefore, is a parameter sensitive to the conformational changes of PGA from acidic through neutral pH region.  相似文献   

14.
Circular dichroism (CD) was used to characterize the secondary structure of penicillin G acylase upon covalent immobilization on silica nanoparticles. Covalent immobilization was achieved by functionalizing the silica nanoparticles with glutardialdehyde and coupling to the free NH(2) groups of the enzyme (lysine and arginine side chains). The loading of the covalently bound enzyme was increased up to saturation, which was reached at 54.6 mg immobilized enzyme per g silica nanobeads. For structural characterization of the commercially available enzyme its exact molecular mass was determined by mass spectrometry in order to enable precise evaluation of the CD data. The fraction of secondary structure elements of the free and immobilized enzyme were estimated from the respective CD spectra using standard algorithms (CONTINLL, CDSSTR, SELCON3). The fractions obtained by the different algorithms for the free enzyme agreed well with one another and also with data from X-ray diffraction described in the literature. Interestingly, the secondary structure fractions found for the immobilized enzyme were very similar to the free enzyme and nearly constant over all experiments. These results indicate that even a loading of up to 55.8 mg/g (enzyme per silica nanoparticles) causes only slight structural changes. However, the specific activity determined by a kinetic assay decreased by around 60%, when increasing the loading from 14.9 to 55.8 mg/g. Because of the fact that we found no major changes in the secondary structure, diffusion limitation seems to be the main reason for the decline of the specific activity.  相似文献   

15.
This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine)(PLL)film.Two-dimensional(2D) correlation analysis was applied to the Fourier transform infrared(FTIR)spectra of the surface-immobilized PLL film to examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain.Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8.The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alky]group in the side chain.From pH 1-8,the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.  相似文献   

16.
The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (相似文献   

17.
A surface plasmon resonance (SPR)-immunosensor for detection of the low molecular weight compound 2,4-dinitorophenol (DNP) at ultra-low concentration has been developed. The sensor strategy is based on a competitive immunoreaction between DNP and a DNP-protein conjugate, namely DNP-bovine serum albumin conjugate (DNP-BSA). Anti-DNP monoclonal antibody was immobilized on a gold thin-film coated SPR-sensor chip by means of a chemical coupling process. DNP-BSA, on contact with the anti-DNP antibody immobilized SPR-immunosensor chip causes an increase in the resonance angle of the sensor chip. The optimum concentration of immobilized antibody on the SPR-sensor chip is 100 μg mL−1. The SPR-immunosensor response for free DNP determination using the competitive immunoreaction had a response time of ca. 15 min. Using this method, DNP could be determined in the concentration range 1 ppt to 1 ppb. The SPR signal for ppt levels of DNP was enhanced by a factor of three by subsequently treating immuno-bound DNP-BSA with a secondary anti-DNP antibody.  相似文献   

18.
The use of surface plasmon resonance (SPR) as a nondestructive, nonerasing readout of the isomerization state of a photochromic dithienylethene covalently linked to a chemically modified gold surface was investigated. Four different binding layers were examined: 11-mercaptoundecanol (MUO), an amine-modified 11-mercaptoundecanol (MUO-NH2), dextran, and an amine-modified dextran. The binding of dithienylethene to the modified gold surface and photoisomerization of the photochrome in the bound state were established by FTIR. Solvent effects were measured for every layer tested using ethanol and hexanes. In general, large, easily measurable SPR signal changes could be detected under conditions where photoisomerization of the dithienylethene photochrome was not quenched by the gold plasmon, establishing SPR as a viable form of readout for potential dithienylethene-based optical data storage or processing devices. Dextran-bound photochrome in ethanol exhibited the largest SPR response upon photoisomerization, but is more prone to time-dependent fluctuations resulting from swelling of the dextran layer (caused by slow diffusion of the solvent) than the other layers. Large responses are also provided by MUO-NH2 and MUO, and the signal is much more stable than that for dextran.  相似文献   

19.
We obtained the association constants Ka of estrogen (E2) and environmental chemicals by the surface plasmon resonance (SPR) assay using the immobilized mono-6-O-α-maltosyl-β-CD (G2βCD) compared with the immobilized β-CD and the immobilized estrogen receptor (ER). The association behavior of G2βCD was shown as a ER model compound. The calibration curve was determined by the initial rate of association depending on the various concentrations, and the minimum detectable concentrations in the order of parts per billion were calculated. The SPR assay has advantages that the pre-treatment of the sample is not necessary and the immobilized ligand is stable and useful for the repeated measurement.  相似文献   

20.
Layer-by-layer (LBL) polyelectrolyte films were constructed from poly(L-glutamic acid) (PGA) and poly(L-aspartic acid) (PAA) as polyanions, and from poly(L-lysine) (PLL) as the polycation. The terminating layer of the films was always PLL. According to attenuated total reflection Fourier transform infrared measurements, the PGA/PLL and PAA/PLL films, despite their chemical similarity, had largely different secondary structures. Extended beta-sheets dominated the PGA/PLL films, while alpha-helices and intramolecular beta-sheets dominated the PAA/PLL films. The secondary structure of the polyelectrolyte film affected the adsorption of human serum albumin (HSA) as well. HSA preserved its native secondary structure on the PGA/PLL film, but it became largely deformed on PAA/PLL films. Both PGA and PAA were able to extrude to a certain extent the other polyanion from the films, but the structural consequences were different. Adding PAA to a (PGA/PLL)5-PGA film resulted in a simple exchange and incorporation: PGA/PLL and PAA/PLL complexes coexisted with their unaltered secondary structures in the mixed film. The incorporation of PGA into a (PAA/PLL)5-PAA film was up to 50% and caused additional beta-structure increase in the secondary structure of the film. The proportions of the two polyanions were roughly the same on the surfaces and in the interiors of the films, indicating practically free diffusion for both polyanions. The abundance of PAA/PLL and PGA/PLL domains on the film surfaces was monitored by the analysis of the amide I region of the infrared spectrum of a reporter molecule, HSA, adsorbed onto the three-component polyelectrolyte films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号