首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
由于日益严重的环境和能源危机,可见光催化剂的开发已成为当今最具挑战和紧迫的任务之一.将TiO_2和其它窄禁带半导体复合,已被证明是一种有效的可提高其可见光光催化性能的策略.Cu_2O是一种禁带宽度为2.0 eV的p型窄禁带半导体,InVO_4则是一种禁带宽度为2.0 eV的n型半导体,因它们可用于可见光光解水产氢和有机污染物的可见光降解而在过去的数年中引起了人们广泛的关注.但是纯的Cu_2O和InVO_4由于光生电子空穴对在其内部快速地复合,光催化活性通常都比较低.基于能带工程的策略本文设计了一种新型的可见光响应的InVO_4-Cu_2O-TiO_2三元纳米异质结,并通过普通的湿化学法进行制备:先通过水热法制备InVO_4,再通过溶胶-凝胶法制备InVO_4-TiO_2二元复合物,最后通过沉淀和还原过程制备得到InVO_4-Cu_2O-TiO_2三元纳米异质结.在10%InVO_4-40%Cu_2O-50%TiO_2三元纳米异质结的X-射线衍射谱中没有观察到明显的杂质峰;通过透射电子显微技术和高分辨透射电子显微技术观察到了它们之间异质结的形成,纳米颗粒的尺寸范围在5-20 nm;经紫外可见漫反射光谱估算得到10%InVO_4-40%Cu_2O-50%TiO_2的禁带宽度为2.78 e V,在可见光区域具有较强的吸收.以普通的9 W节能灯作为可见光光源光照甲基橙5 h后,纯的InVO_4,TiO_2和Cu_2O几乎没有光催化活性;10%InVO_4-90%TiO_2的光催化活性也很低,甲基橙降解率为8%;70%Cu_2O-30%TiO_2对甲基橙降解率达84%,但初始活性较低;10%InVO_4-40%Cu_2O-50%TiO_2对甲基橙降解率接近90%,并且循环使用6次后,其光催化活性的保持率还维持在90%以上,而50%Cu_2O-50%TiO_2光催化活性的保持率只有74%.经对使用过的10%InVO_4-40%Cu_2O-50%TiO_2进行X射线光电子能谱表征发现,存在一弱小的Cu(II)震动卫星峰,表明在InVO_4-Cu_2O-TiO_2的光催化过程中Cu_2O的光蚀并不严重.从能带工程的角度分析,InVO_4-Cu_2O-TiO_2三元纳米异质结具有优异的可见光催化性能的主要原因为:InVO_4的导带电极电位约为-0.5 e V(vs.SHE,下同),价带电位约为+1.5 e V,Cu_2O的分别约为-1.6和+0.4 e V,与TiO_2(导带和价带电极电位分别约为-0.23和+2.97 e V)相比,它们的导带位置更负,将它们组装成三元复合结构,可见光激发的导带电子就可能从InVO_4和Cu_2O的导带迁移到TiO_2的导带上去.同时,n型的TiO_2和InVO_4都与p型的Cu_2O形成p-n异质结,n型的TiO_2和InVO_4之间形成n-n异质结,由于p-n异质结中内电场的存在以及不同能级相互耦合,可进一步促进可见光激发的导带电子从InV O4和Cu_2O的导带迁移到TiO_2的导带上去,以及可见光激发的价带空穴从InVO_4的价带迁移到Cu_2O的价带上去,从而实现光生载流子空间上的有效分离.本文有望为新型可见光响应的半导体复合催化剂的设计和制备提供新的思路.  相似文献   

2.
在用阳极氧化法制备有序排列TiO2纳米管阵列薄膜的基础上,引入脉冲沉积工艺,成功实现了均匀、弥散分布的Cu2O纳米颗粒修饰改性TiO2纳米管阵列,形成Cu2O/TiO2纳米管异质结复合材料.利用场发射扫描电镜(FESEM)、场发射透射电镜(FETEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对样品进行表征,重点研究了Cu2O/TiO2纳米管异质结的光电化学特性和对甲基橙(MO)的可见光催化降解性能.结果表明,Cu2O纳米颗粒均匀附着在TiO2纳米管阵列的管口和中部位置,所制备的Cu2O/TiO2纳米管异质结具有高效的可见光光催化性能;在浓度为0.01 mol?L-1的CuSO4溶液中制得的Cu2O/TiO2纳米管异质结表现出最好的电化学特性和光催化性能;另外,对Cu2O纳米颗粒影响光催化活性的机理进行了讨论.  相似文献   

3.
韩穗奇  李佳  杨凯伦  林隽 《催化学报》2015,(12):2119-2126
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 eV)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常, Bi2O3具有a,b,g,d,e和w等六种晶型,其中,a,b和d-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快, Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与a-Bi2O3直接作用原位形成的a-Bi2O3与铋的卤氧化合物BiOX (X = Cl, Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的b-Bi2O3(带宽约2.3 eV)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理b-Bi2O3形成b-Bi2O3/BiOI异质结.该异质结表现较纯b-Bi2O3和BiOI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了b-Bi2O3/BiOI异质结,并提出其高催化活性的机理. XRD结果显示,用HI原位处理b-Bi2O3可形成BiOI相,并且随着HI使用量增加,混合物中的BiOI相逐渐增多. HRTEM结果进一步表明,在混合物中的b-Bi2O3和BiOI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和ahv =A(hv –Eg)n/2等公式,计算出了b-Bi2O3和BiOI带隙分别为2.28和1.77 eV,以及两种半导体的导带和价带位置. b-Bi2O3的导带和价带位置分别为0.31和2.59 eV,而BiOI的导带和价带位置分别为0.56和2.33 eV.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而, XPS测定结果显示,b-Bi2O3和BiOI相互接触形成异质结后,b-Bi2O3相的电子向BiOI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.b-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而BiOI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了b-Bi2O3/BiOI异质结高催化活性的机理.当b-Bi2O3与BiOI形成异质结时,由于b-Bi2O3的费米能级较BiOI的高,因而电子从b-Bi2O3转向BiOI,直至新的费米能级形成.因此电子在两相之间移动导致了b-Bi2O3能带结构整体下移,以及BiOI能带结构整体上移,使得新形成的BiOI导带和价带位置高于b-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至b-Bi2O3的导带,而空穴会移至BiOI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性. PL测试也证实了b-Bi2O3/BiOI异质结具有更长的光生电子-空穴寿命.  相似文献   

4.
近几十年来,光电化学分解水制氢作为一种洁净的、能持续利用太阳能的技术受到极大关注.在众多光催化材料中,p型半导体氧化亚铜(Cu2O)被认为是最有前途的可见光光电分解水材料之一.理论上,它的光能转换为氢能的效率可达到18.7%.然而,目前所报道的Cu2O光转换效率远远低于此值;同时,纯Cu2O在光照条件下的稳定性较差.研究表明,Cu2O与其它半导体复合可以增强其光电转换效率和提高稳定性.如Cu2O和能带匹配的石墨相氮化碳(g-C3N4)复合后,光催化性能和稳定性都有较大提高.但目前所报道的Cu2O/g-C3N4复合物几乎都是粉末状催化剂,不便于回收和重复使用.本文首先采用电化学方法在FTO导电玻璃上沉积Cu2O薄膜,采用溶胶凝胶法制备g-C3N4纳米颗粒材料,然后采用电化学法在Cu2O薄膜表面沉积一层g-C3N4纳米颗粒,得到了Cu2O/g-C3N4异质结膜.分别利用X射线粉末衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、紫外可见光谱(UV-Vis)和光电化学分解水实验分析了Cu2O/g-C3N4异质结的组成结构、表面形貌、光吸收性能及催化剂活性和稳定性.XRD和HRTEM表征显示,本文成功合成了Cu2O/g-C3N4异质结材料,SEM图表明g-C3N4纳米颗粒在Cu2O表面分布均匀,大小均一.可见光光电化学分解水结果显示,异质结薄膜的光电化学性能比纯的Cu2O和g-C3N4薄膜材料有极大提高.当在Cu2O表面沉积g-C3N4的时间为15 s时,得到样品Cu2O/g-C3N4-15异质结膜,其在–0.4 V和可见光照射条件下,光电流密度达到了–1.38 mA/cm2,分别是纯Cu2O和g-C3N4薄膜材料的19.7和6.3倍.产氢速率也达到了0.48 mL h–1 cm–2,且产氢和产氧的速率之比约为2,说明此异质结材料在可见光作用下能全分解水.经过三次循环实验,光电化学分解水的效率仅降低10.8%,表明该材料具有良好的稳定性.根据UV-Vis表征和光电化学性能对比,Cu2O/g-C3N4-15的光电性能最好,但其光吸收性能并不是最好,说明光电化学性能与光吸收不是成正比关系,主要是由于Cu2O和g-C3N4两个半导体相互起到了协同作用.机理分析表明,Cu2O/g-C3N4异质结薄膜在光照下,由于两者能带匹配,Cu2O的光生电子从其导带转移到g-C3N4的导带上,g-C3N4价带上的空隙转移到Cu2O的价带上,从而降低了光生电子和空隙的复合,提高了其光催化性能.由于g-C3N4的导带位置高于H2O(或H+)还原为H2的电势,Cu2O的价带位置低于H2O(或OH–)还原为O2的电势,所以在外加–0.4 V偏压和可见光照射条件下,Cu2O/g-C3N4能全分解水,光生载流子越多,光电化学分解水的速率越大.综上所述,在Cu2O薄膜上沉积g-C3N4后得到的异质结薄膜具有高效的光能转换为氢能性能.  相似文献   

5.
Ag2O是优良的感光材料,很少作为光催化材料,而常被用作光催化材料的共催化剂.此外,由于Ag2O禁带宽度窄,且可有效吸收近红外光,因而不能用于全太阳光谱的光催化应用中.同时很少被用作NIR催化剂.本文中不仅研究了纳米Ag2O颗粒的UV-Vis光催化性能,而且还系统探究了其NIR光催化活性.由于在紫外线和可见光的照射下,Ag2O纳米颗粒易发生光还原失活,因而对Ag2O表面硫化处理,使其表面上生长Ag2S2O7层以形成Ag2S2O7/Ag2O异质结,探究了该异质结UV-Vis光催化活性及其光催化循环稳定性;同时,考察了其近红外光催化及其重复使用性能.利用沉淀法成功制备了Ag2O纳米颗粒,并通过在其表面部分硫化处理得到Ag2S2O7,成功构筑Ag2S2O7/Ag2O异质结构,并研究了该Ag2S2O7/Ag2O异质结构UV-Vis-NIR光催化降解有机污染物性能.研究表明,Ag2O纳米颗粒在光子能量较低的NIR照射条件下具有较强的光催化活性,但UV-Vis照射下,虽然Ag2O具有光催化活性,但易发生光还原生成单质银,降低其光催化稳定性;Ag2S2O7/Ag2O纳米异质结,虽然在UV-Vis-NIR范围内光催化活性略降于Ag2O,但稳定性显著提高,总体来看,Ag2S2O7/Ag2O异质结构在全光谱催化方面更具优势.这主要是由于Ag2O表面部分硫化得到的Ag2S2O7纳米颗粒,且二者之间能带匹配促进了光生载流子分离,同时Ag2O表面的Ag2S2O7颗粒直接吸收能量较高的UV-Vis,进而保护内部Ag2O,抑制了其自身还原,可显著提高Ag2S2O7/Ag2O异质结在UV-Vis-NIR催化活性及稳定性.实验结果分析表明,Ag2S2O7/Ag2O异质结纳米颗粒在UV-Vis-NIR条件下均具有稳定且高效的光催化活性,其主要原因为:(1)具有窄带隙的Ag2O可有效拓宽该异质结的光谱吸收;(2)Ag2S2O7/Ag2O异质结能带匹配可有效促使光生载流子分离;(3)Ag2O颗粒表面的Ag2S2O7纳米颗粒可有效提高Ag2S2O7/Ag2O异质结纳米颗粒的光化学稳定性,尤其是在UV-Vis条件下的化学稳定性.Ag2O纳米颗粒受到光照(UV-Vis-NIR)激发后产生电子-空穴对,由于Ag2S2O7与Ag2O能带位置的匹配,Ag2O导带的光生电子注入Ag2S2O7的导带;而Ag2S2O7价带的光生空穴注入Ag2O的价带.Ag2O表面的Ag2S2O7颗粒可有效捕捉电子,从而阻止Ag2O产生的电子-空穴对复合,进而提高光催化活性;同时当光子能量较高(UV以及部分短波长的Vis)时,Ag2O表面的Ag2S2O7颗粒直接吸收该部分光能,进而保护内部Ag2O发生自身还原,因此,Ag2S2O7/Ag2O异质结纳米颗粒在UV,Vis及NIR条件下均具有稳定且高效的光催化活性,在高效利用全光谱光催化降解有机污染物方面具有较大的潜力.  相似文献   

6.
张煜  刘兆阅  翟锦 《化学学报》2013,71(5):793-797
采用阳极氧化法制备出结构规整的TiO2纳米管阵列,然后利用电化学沉积法制备出不同电沉积时间下Cu2O/TiO2纳米管阵列异质结.通过SEM和UV-vis对样品进行表征,并对样品的可见光光电转换、光解水等性质进行了测试.结果表明,Cu2O/TiO2纳米管阵列异质结体系在可见光区域有很强的吸收,TiO2与Cu2O之间形成的p-n结具有单向二级管的性质,能有效降低光生电子-空穴对的重组,提高光致电荷分离及电子-空穴对的迁移率.当电沉积时间为30 min时,Cu2O/TiO2纳米管阵列异质结(Cu2O/TiO2NTs-30)表现出最优的可见光光电响应性质.虽然与TiO2纳米管相比,Cu2O/TiO2NTs-30的开路电压减少了0.046 V,但短路电流却提高了4.5倍,最大吸收波长处光电转换效率提高了近6倍.  相似文献   

7.
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 e V)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常,Bi2O3具有α,β,γ,δ,ε和ω等六种晶型,其中,α,β和δ-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快,Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与α-Bi2O3直接作用原位形成的α-Bi2O3与铋的卤氧化合物Bi OX(X=Cl,Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的β-Bi2O3(带宽约2.3 e V)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理β-Bi2O3形成β-Bi2O3/Bi OI异质结.该异质结表现较纯β-Bi2O3和Bi OI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了β-Bi2O3/Bi OI异质结,并提出其高催化活性的机理.XRD结果显示,用HI原位处理β-Bi2O3可形成Bi OI相,并且随着HI使用量增加,混合物中的Bi OI相逐渐增多.HRTEM结果进一步表明,在混合物中的β-Bi2O3和Bi OI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和αhv=A(hv–Eg)n/2等公式,计算出了β-Bi2O3和Bi OI带隙分别为2.28和1.77 e V,以及两种半导体的导带和价带位置.β-Bi2O3的导带和价带位置分别为0.31和2.59 e V,而Bi OI的导带和价带位置分别为0.56和2.33 e V.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而,XPS测定结果显示,β-Bi2O3和Bi OI相互接触形成异质结后,β-Bi2O3相的电子向Bi OI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.β-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而Bi OI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了β-Bi2O3/Bi OI异质结高催化活性的机理.当β-Bi2O3与Bi OI形成异质结时,由于β-Bi2O3的费米能级较Bi OI的高,因而电子从β-Bi2O3转向Bi OI,直至新的费米能级形成.因此电子在两相之间移动导致了β-Bi2O3能带结构整体下移,以及Bi OI能带结构整体上移,使得新形成的Bi OI导带和价带位置高于β-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至β-Bi2O3的导带,而空穴会移至Bi OI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性.PL测试也证实了β-Bi2O3/Bi OI异质结具有更长的光生电子-空穴寿命.  相似文献   

8.
光催化还原CO2生成烃类燃料是一种可同时解决全球变暖和能源危机问题的最有效途径之一。尽管这方面的研究已经取得了一定的进展,但是整体的光催化转换效率还非常低。因此,需要发展更加高效的催化剂。由于半导体材料禁带宽度与太阳光谱相匹配,人们已经对其进行了广泛研究。其中TiO2因具有无毒、强氧化性以及良好的光学和电学性质等而成为最主要的研究对象。但是对于光催化还原CO2反应来说, TiO2仍存在很多不足,如只能吸收太阳光谱中的紫外光,光生载流子会快速结合,以及光生空穴的强氧化能力等,这些都限制了其光催化还原CO2的效率。采用窄禁带宽度半导体修饰TiO2是解决上述不足的有效途径之一。本文采用简单的电化学方法成功制备了一种由窄禁带半导体Cu2O修饰的TiO2纳米管(TNTs)的复合物,并运用扫描电子显微镜(SEM)、X射线衍射(XRD)以及X射线光电子能谱(XPS)表征了所制备复合物的形貌、化学组成和结晶度。表征结果显示,所制备的TiO2为整齐排列的纳米管阵列结构;复合物中的纳米颗粒为Cu2O;当电化学沉积Cu2O的时间为5 min时,得到的Cu2O纳米颗粒初步呈类八面体结构。随着沉积时间的增加, Cu2O颗粒尺寸增加,具有八面体结构。 XRD和XPS结果表明, TiO2纳米管为锐钛矿,八面体Cu2O纳米颗粒的主要暴露晶面为(111)面。我们还进一步研究了不同量Cu2O纳米颗粒修饰的TiO2纳米管复合物在可见光以及模拟太阳光下光催化还原CO2的能力。在可见光下,由于自身的禁带宽度,纯净的TiO2纳米管没有任何光催化还原CO2的能力;经过Cu2O纳米颗粒的修饰,复合物显现出明显的光催化还原CO2的能力,其中经过30 min Cu2O沉积的TNTs具有最高的光催化效率。在模拟太阳光下,经过15 min Cu2O沉积的TNTs具有最高的光催化效率。在所有光催化还原CO2过程中,主要碳氢产物为甲烷。为了深入地理解该复合体系在还原CO2中的高催化效率,我们对催化剂进行了进一步的表征。紫外-可见漫反射光谱表明, Cu2O八面体纳米颗粒的沉积将TNTs的吸收光谱拓展到了可见光区域,提高了复合物对太阳光的吸收能力。此外,我们还通过测试所制样品的光电流反应、荧光发射光谱以及电化学阻抗谱,研究了催化剂中光生电子和空穴的分离和迁移能力。结果表明,适量的Cu2O沉积提高了复合物对光的吸收能力,增加了光生载流子的数量,从而使更多的光生载流子参与光催化反应。综上,本文首次报道了八面体Cu2O纳米颗粒修饰TNTs复合物的光催化还原CO2的能力。在一定量的Cu2O纳米颗粒修饰下,该复合物在光催化还原CO2生成烃类反应中表现出高效性。经过一系列详细的表征和讨论,我们认为其高效性主要源于三个方面:(1) TNTs的管状结构为反应物的吸附提供了大量的活性位点,同时一维的管状结构更有利于光生载流子的运载,从而提高了电子和空穴的分离;(2) Cu2O纳米颗粒的修饰提高了催化剂对光的吸收,促进催化剂最大程度地利用太阳光;(3) TiO2和Cu2O之间导带以及价带位置的匹配,在减少光生载流子复合的同时也降低了TiO2价带上空穴的氧化能力,从而抑制了CO2还原产物的再氧化过程。  相似文献   

9.
自Fujishima等首次报道以来, TiO_2作为一种重要的光催化剂引起了人们的广泛关注.迄今为止,研究人员已经开发出了各种形貌的具有不同晶型结构的TiO_2,并用于光催化降解有机污染物.然而, TiO_2的宽禁带(3.2 eV)使其难以被可见光激活,导致对太阳光的利用效率低下.而且,在光催化反应中,低的量子效率无法满足实际应用.因此,开发具有可见光响应的高催化活性的TiO_2基催化剂具有重要意义.集成复合材料、纳米材料和界面的优势构建纳米复合材料已成为提高TiO_2光催化活性的重要策略. WS_2具有典型的类石墨烯层状结构和窄的带隙(1.35 eV),且其导带高于TiO_2的导带,适合作为助催化剂修饰TiO_2,使其具备可见光响应光催化活性.本文采用一步水热法,以二维(2D)TiO_2纳米片作基质材料,直接在其表面原位生长WS_2层,制得了2D-2D TiO_2纳米片/层状WS_2(TNS/WS_2)异质结. XRD及Raman结果表明,层状WS_2与TiO_2纳米片紧密结合在一起,且两者之间形成了W=O键.TEM结果显示,层状WS_2以面-面堆叠方式均匀地包覆在TiO_2纳米片表面,包覆层数约为4层.光催化性能测试结果表明,可见光照射下, TNS/WS_2异质结对RhB的光催化降解能力高于原始TiO_2纳米片和层状WS_2,光催化活性得到明显增强.紫外可见光谱试验结果显示,层状WS_2的引入极大地增强了异质结的光吸收性能. PL光谱测试表明, TNS/WS_2异质结具有更高效的载流子分离效率.为了进一步证实是光吸收性能的提升还是载流子分离效率的增强对光催化性能提起其主要作用,本文还研究了3D-2D TiO_2空心微球/层状WS_2(THS/WS_2)复合材料.结果表明, TNS/WS_2异质结比THS/WS_2复合材料具有更高效的光生电子和空穴的分离能力.从而证明了TiO_2纳米片与层状WS_2之间完美的2D-2D纳米界面和紧密的界面结合,显著增加了载流子分离效率,因此光催化活性得到明显提高.为了研究TNS/WS_2异质结光催化剂的光催化机理,采用重铬酸钾、草酸铵、叔丁醇和对苯醌作自由基猝灭剂进行了自由基捕捉剂实验.结果表明,空穴在RhB降解过程中起主要作用,超氧自由基起次要作用.基于自由基猝灭实验结果和带隙结构分析,提出了TNS/WS_2异质结对RhB的光催化机理为双转移光催化机理.可见,界面异质结工程化可能是制备高效和环境稳定的光催化剂的新思路  相似文献   

10.
纳米结构TiO2/聚3-己基噻吩多孔膜电极光电性能研究   总被引:6,自引:0,他引:6  
郝彦忠  蔡春立 《物理化学学报》2005,21(12):1395-1398
用光电流作用谱、光电流-电势图等光电化学方法研究了ITO/聚3-己基噻吩(ITO/ P3HT)膜和纳米结构TiO2/聚3-己基噻吩(TiO2/P3HT)复合膜的光电转换性质. 结果表明, P3HT膜的禁带宽度为1.89 eV, 价带位置为-5.4 eV. 在ITO/TiO2/ P3HT复合膜电极中存在p-n异质结, 在一定条件下异质结的存在有利于光生电子-空穴对的分离. P3HT修饰ITO/TiO2电极可使光电流发生明显的红移, 从而提高了宽禁带半导体的光电转换效率.  相似文献   

11.
为提高TiO_2纳米管阵列(TiO_2-NTs)的可见光活性,通过阳极氧化和热分解法制备了Fe_2O_3纳米粒子修饰的TiO_2纳米管阵列(Fe_2O_3/TiO_2-NTs)。通过扫描电子显微镜(SEM),透射电子显微镜(TEM)和紫外-可见光漫反射光谱(UV-vis DRS)等对产物进行了相关表征,同时测试了产物的光电性能及其光催化降解甲基橙的性能。结果显示,Fe_2O_3/TiO_2-NTs的光电流强度和光催化降解率分别是是TiO_2-NTs的19倍和8.7倍。  相似文献   

12.
研究了用一步水热法制备的掺镧钛酸铋(Bi3.25La0.75Ti3O12, BLT)纳米线的光学和可见光催化性能, 并对其晶体结构和微观结构用X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段进行了表征. 结果表明, 制备的纳米线为纯相的Bi3.25La0.75Ti3O12, 平均直径约为25 nm. 室温光致发光谱(PL)显示BLT纳米线在433和565 nm附近有较强的发射峰, 分别对应激子发射和表面缺陷发光. 紫外-可见漫反射光谱(UV-Vis DRS)表明BLT样品的带隙能约为2.07 eV. 利用可见光(λ>420 nm)照射下的甲基橙降解实验评价了BLT样品的光催化性能. 结果表明, BLT的光催化活性比商用TiO2催化剂P25、掺氮TiO2和纯相钛酸铋(Bi4Ti3O12, BIT)高得多. BLT光催化剂具有更高催化活性的原因是La3+离子掺杂拓展了BIT对可见光的吸收范围, 同时抑制了BIT的光生电子-空穴的复合.  相似文献   

13.
TiO2空心微球因具有低密度、高活性、易分离而有利于多次重复使用的优点而广受关注.本文介绍一种无氟制备TiO2空心微球的简单方法——磷钨酸钾(K3PW12O40)模板法.首先,将H3PW12O40和KCl溶液混匀,得到白色牛奶状的K3PW12O40模板(式(1)),然后在磁力搅拌下加入一定量的Ti(SO4)2粉末,加热至大约125oC开始回流.回流8 h后,过滤洗涤.滤饼分散在强NaOH溶液中,原位除去K3PW12O40模板(式(2)).最后,将催化剂洗涤到滤液为中性,干燥后即得到TiO2空心微球.3KCl + H3PW12O40= K3PW12O40ˉ+3HCl (1) K3PW12O40+24NaOH =12Na2WO4+ K3PO4+12 H2O (2) Ti(SO4)2+2H2O = TiO2+2H2SO4(3)我们将所制备的TiO2空心微球,采用X射线衍射、透射电子显微镜、扫描电子显微镜、傅立叶红外光谱、固体粉末漫反射和X射线光电子能谱等进行了表征.采用紫外光催化降解阴离子染料(活性嫣红X3B)来评价催化剂的性能.实验结果显示:(1)所制TiO2空心微球直径在0.5–1.0μm;(2)磷钨酸钾模板剂充当晶核,有利于空心微球的晶化;(3)加入的高浓度硫酸钛,水解产生大量的硫酸,抑制硫酸钛水解,不利于TiO2空心微球的晶化(式(3));(4)催化剂的活性随着硫酸钛量的增加而先增后降.4 mmol硫酸钛用量的TiO2空心微球具有最高的光催化活性,是TiO2颗粒样品(无磷钨酸钾模板法制备)的2.1倍.用该方法制备的TiO2空心微球活性高可归因于以下主要原因:(1)TiO2空心微球独特的孔结构;(2)良好的晶化程度(TiO2样品晶化度越高,越有利于光生载流子的分离,抑制复合);(3)样品残余磷钨酸钾模板和TiO2之间存在光生电子转移,有利于空心微球TiO2活性的提高.该法具有操作简单、重复性好、易于批量制备的等优点,有望广泛应用于(光)催化、电化学、分离与纯化以及药物缓释等领域.  相似文献   

14.
以TiH2为Ti源,H2O2为氧化剂,首先通过表面氧化得到不同状态的前驱体凝胶,然后采用后续水热处理制备Ti3+自掺杂的纳米Ti O2.考察了前驱体凝胶状态及水热处理时间对材料结构和性能的影响.利用X射线衍射、透射电子显微镜、X射线光电子能谱、电子顺磁共振波谱和紫外-可见漫反射光谱手段对样品进行表征.以次甲基蓝溶液为模拟废水评价样品的可见光催化降解性能.结果表明,与纯Ti O2相比,Ti3+的自掺杂使材料在可见光区有明显的吸收,并具有良好的可见光催化降解性能和循环使用性能.当采用黄色凝胶为前驱体时,在160°C下水热处理24 h所得样品在可见光下光催化降解次甲基蓝的反应速率常数(0.0439 min-1)是纯Ti O2的18.3倍.  相似文献   

15.
采用两步法制备了MoS_2/Cu_2O催化剂,对其催化降解甲基橙(MO)性能进行了研究.首先,通过液相剥离和梯度离心获得少数层MoS_2纳米片,然后采用水热还原法在MoS_2纳米片上合成Cu_2O纳米颗粒,形成MoS_2/Cu_2O复合半导体,并分别通过扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、UV-Vis紫外可见漫反射光谱(DRS)等手段对催化剂的结构进行表征.在可见光下,MoS_2/Cu_2O复合半导体降解MO的效率明显高于纯MoS_2和Cu_2O.为了获得最佳光催化活性,探究了MoS_2质量分数(5%、10%、20%、30%、40%、50%)对MoS_2/Cu_2O复合半导体光催化降解MO的影响.最后,经过5次循环实验,MoS_2/Cu_2O降解率下降为82.5%,循环稳定性有待进一步提高.  相似文献   

16.
2-仲丁基-4,6-二硝基苯酚(DNBP)作为杀虫剂、除草剂和烯烃基芳香族化合物阻聚剂而被广泛地应用于工农业生产中.在 DNBP生产和使用过程中,会产生大量难以降解的有机废水,从而对人类和生态环境造成极大危害.因此,开展含 DNBP废水的处理技术和方法研究具有重要的现实意义. TiO2半导体材料由于具有良好的光化学特性和电化学行为,近几十年来一直是光催化领域的研究热点.在能量等于或大于 TiO2的带隙能级的辐照光照射下, TiO2可以产生光生电子/空穴对(e-/h+).光生电子和空穴分别与 TiO2表面被吸附的 H2O和 O2分子反应,生成具有强氧化性的活性羟基自由基(?OH),对硝基酚类有机污染物具有较强的降解能力. TiO2光催化反应属于非均相反应,反应在催化剂的表面进行,催化剂对污染物的吸附是影响其催化降解性能的重要因素.但是,传统 TiO2光催化剂存在比表面积小,对有机污染物吸附能力差,光生电子与空穴易于复合等缺陷,限制了 TiO2光催化技术的进一步发展和在水处理领域中的大规模应用.我们基于气凝胶具有多孔性、大比表面积和高孔隙率的特点,以富含硅、铝的工业废弃物粉煤灰为反应原料,首先利用碱熔法和常压干燥技术制备出 SiO2-Al2O3气凝胶.在此基础上,以钛酸四丁酯(TBOT)为反应前体, SiO2-Al2O3气凝胶为载体,利用酸催化溶胶-凝胶法(sol-gel)制备出 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂.利用 X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)、N2吸附-脱附(BET)、紫外-可见吸收光谱(UV-vis)等分析测试技术对所制备的 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂结构进行了表征.结果显示,在 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂中,粒径尺寸为10~30 nm的锐钛矿型 TiO2纳米颗粒均匀分散在 SiO2-Al2O3气凝胶载体上. TiO2/SiO2-Al2O3气凝胶三元复合光催化剂呈现典型介孔材料的 IV型等温线. SiO2-Al2O3气凝胶的加入极大提高了 TiO2光催化剂的比表面积和对有机污染物的吸附性能,但是对 TiO2光波吸收范围影响不大.在制备出 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂基础上,进一步对其在可见光条件下的光催化性能进行了研究.以500 W的 Xe灯光源模拟自然太阳光, DNBP为探针污染物分子,系统考察了可见光照射条件下溶液 pH值、光催化剂用量、光反应时间、DNBP溶液初始浓度不同因素对 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂催化活性的影响.结果表明, TiO2/SiO2-Al2O3气凝胶三元复合光催化剂对 DNBP有机污染物的吸附率和光降解率明显高于纯 TiO2样品.在 DNBP溶液初始浓度为0.167 mmol/L, pH =4.86,催化剂用量6 g/L,光照时间5 h的条件下, TiO2/SiO2-Al2O3气凝胶三元复合光催化剂对 DNBP的降解率几乎高达100%.根据 Langmuir-Hinshelwood方程,在低浓度下光催化降解反应符合一级反应动力学.所制备的 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂具有良好的稳定性和重复利用性能.重复利用5次后, TiO2/SiO2-Al2O3气凝胶三元复合光催化剂对 DNBP的降解率仍高达90%以上.利用紫外-可见分光光度计、气相-质谱联用仪对 DNBP降解中间产物进行了分析,探讨了 DNBP的光催化降解机理.  相似文献   

17.
化石能源的使用可产生大量CO2,带来严重的温室效应。光催化CO2还原生产太阳燃料技术既有望缓解温室效应,又可以将低能量密度的太阳能转化为高能量密度的化学能储存起来方便使用。高效光催化材料的开发是发展光催化技术的关键。迄今,在已开发的所有半导体光催化材料中, TiO2仍是广泛研究的明星材料。在实际使用中, TiO2的光催化效率仍受限于其极弱的可见光利用率和较高的电子-空穴复合几率。近年来,越来越多的研究表明TiO2的结构与形貌特征极大地影响其光催化效率。尤其, TiO2的外露晶面设计与晶面效应研究引起了广泛关注。由于具有较高表面能和较多表面不饱和键,起初大多数理论和实验研究认为锐钛矿TiO2(001)晶面是光催化活性晶面。后来,越来越多研究表明并非锐钛矿TiO2(001)晶面的暴露比例越高其光催化活性就越高。最近,我们发现锐钛矿TiO2(001)晶面与(101)晶面在调控光催化CO2还原性能上具有良好的协同效应。密度泛函理论计算表明,锐钛矿TiO2的(001)晶面与(101)晶面的能带结构有差异,(001)晶面的导带位置相对于(101)晶面而言较高,而(101)晶面的价带位置相对于(001)晶面而言较低。基于此我们提出,具有合适比例的锐钛矿TiO2的(001)晶面与(101)晶面的交界处可以形成最佳的表面异质结或晶面异质结。表面异质结的形成导致光生电子倾向于向(101)扩散,光生空穴倾向于向(001)扩散,从而促进光生电子-空穴分离,降低光生电子-空穴复合几率。在此工作基础上,我们直接以氮化钛为原料,氢氟酸为添加剂,通过简单的水热反应一步合成了氮自掺杂的TiO2微米片。利用X射线粉末衍射、扫描电镜、X射线光电子能谱、紫外-可见漫反射光谱、氮气吸附-脱附以及电化学阻抗谱等方法手段对所制备的光催化剂进行了基本结构与理化性质表征分析,并研究了其可见光光催化CO2还原性能。电镜照片结果表明,我们所制备的氮自掺杂锐钛矿TiO2微米片的(001)晶面与(101)晶面比例分别为65%和35%。基于我们前期研究结果, TiO2微米片的(001)晶面与(101)晶面可以形成表面异质结,具有良好的电荷分离效率,这也得到了电化学阻抗谱研究结果的证明。同时,由于N的原位掺杂,所制备的TiO2微米片具有优异的可见光捕获能力。由于可见光利用效率增强与光生电子-空穴分离效率提高这两方面的综合作用,所制备的氮自掺杂TiO2微米片具有非常好的可见光光催化CO2还原制甲醇性能,比商用P25及氮掺杂TiO2纳米粒子等参考样品的可见光光催化性能更优异。研究表明,通过原位自掺杂方法与晶面设计方法相结合,可以同时改善TiO2的可见光利用效率和光生电子-空穴分离效率,优化TiO2的可见光光催化性能,这也为后续开发新型高效光催化材料提供了新思路。  相似文献   

18.
A TiO(2)-nanotube-array-based photocatalytic fuel cell system was established for generation of electricity from various refractory organic compounds and simultaneous wastewater treatment. The present system can respond to visible light and produce obviously enhanced cell performance when a narrow band-gap semiconductor (i.e. Cu(2)O and CdS) was combined with TiO(2) nanotubes.  相似文献   

19.
以钛酸四丁酯、KBr、AgNO3为前体,合成了具有异质结结构的纳米AgBr/Ti O2复合可见光催化剂.利用XRD、TEM、HRTEM和UV-Vis等方法对催化剂的晶相组成、形貌、粒度、微观结构、吸光性能等进行了表征.光催化降解亚甲基蓝活性结果表明,复合与单组分催化剂的光催化活性顺序为:AgBr/Ti O2AgBrAg-Br/P25P25Ti O2.含光敏剂AgBr的复合及单组份催化剂由于具有对可见光的良好吸收性能而具有较高的光催化活性.对于AgBr/Ti O2光催化剂,随mAgNO3/mTi O2比的增加,光催化活性先增强后减弱,当mAgNO3/mTi O2=3.35时光催化活性最高,分析结果表明,该复合催化剂粒径约15 nm,分散均匀且形成了紧密接触的AgBr/Ti O2异质结微结构,在紫外可见区(250~800 nm)都具有最强的光吸收.  相似文献   

20.
Magnetic TiO2/SiO2/NiFe2O4 composite photocatalytic particles with high crystalline TiO2 shell were synthesized via a mild solution route.The prepared composite particles were characterized with X-ray diffraction(XRD),transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM),scanning electron microscopy(SEM),ultraviolet-visible(UV-Vis) spectroscopy and vibrating sample magnetometer(VSM).The results show that the obtained TiO2/SiO2/NiFe2O4 composite particles were composed...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号