首页 | 本学科首页   官方微博 | 高级检索  
     检索      

在光催化还原CO2中具有高催化效率的八面体Cu2O修饰的TiO2纳米管
引用本文:李延芳,张文沛,沈星,彭鹏飞,熊良斌,余颖.在光催化还原CO2中具有高催化效率的八面体Cu2O修饰的TiO2纳米管[J].催化学报,2015(12):2229-2236.
作者姓名:李延芳  张文沛  沈星  彭鹏飞  熊良斌  余颖
作者单位:1. 华中师范大学物理科学与技术学院纳米科技研究所,湖北武汉,430079;2. 湖北工程学院物理与电子信息工程学院,湖北孝感,432000
基金项目:国家自然科学基金,湖北省自然科学基金重点项目,武汉应用基础研究项目,中央高校基本科研业务费专项资金,博士后科学基金,湖北省教育厅
摘    要:光催化还原CO2生成烃类燃料是一种可同时解决全球变暖和能源危机问题的最有效途径之一。尽管这方面的研究已经取得了一定的进展,但是整体的光催化转换效率还非常低。因此,需要发展更加高效的催化剂。由于半导体材料禁带宽度与太阳光谱相匹配,人们已经对其进行了广泛研究。其中TiO2因具有无毒、强氧化性以及良好的光学和电学性质等而成为最主要的研究对象。但是对于光催化还原CO2反应来说, TiO2仍存在很多不足,如只能吸收太阳光谱中的紫外光,光生载流子会快速结合,以及光生空穴的强氧化能力等,这些都限制了其光催化还原CO2的效率。采用窄禁带宽度半导体修饰TiO2是解决上述不足的有效途径之一。本文采用简单的电化学方法成功制备了一种由窄禁带半导体Cu2O修饰的TiO2纳米管(TNTs)的复合物,并运用扫描电子显微镜(SEM)、X射线衍射(XRD)以及X射线光电子能谱(XPS)表征了所制备复合物的形貌、化学组成和结晶度。表征结果显示,所制备的TiO2为整齐排列的纳米管阵列结构;复合物中的纳米颗粒为Cu2O;当电化学沉积Cu2O的时间为5 min时,得到的Cu2O纳米颗粒初步呈类八面体结构。随着沉积时间的增加, Cu2O颗粒尺寸增加,具有八面体结构。 XRD和XPS结果表明, TiO2纳米管为锐钛矿,八面体Cu2O纳米颗粒的主要暴露晶面为(111)面。我们还进一步研究了不同量Cu2O纳米颗粒修饰的TiO2纳米管复合物在可见光以及模拟太阳光下光催化还原CO2的能力。在可见光下,由于自身的禁带宽度,纯净的TiO2纳米管没有任何光催化还原CO2的能力;经过Cu2O纳米颗粒的修饰,复合物显现出明显的光催化还原CO2的能力,其中经过30 min Cu2O沉积的TNTs具有最高的光催化效率。在模拟太阳光下,经过15 min Cu2O沉积的TNTs具有最高的光催化效率。在所有光催化还原CO2过程中,主要碳氢产物为甲烷。为了深入地理解该复合体系在还原CO2中的高催化效率,我们对催化剂进行了进一步的表征。紫外-可见漫反射光谱表明, Cu2O八面体纳米颗粒的沉积将TNTs的吸收光谱拓展到了可见光区域,提高了复合物对太阳光的吸收能力。此外,我们还通过测试所制样品的光电流反应、荧光发射光谱以及电化学阻抗谱,研究了催化剂中光生电子和空穴的分离和迁移能力。结果表明,适量的Cu2O沉积提高了复合物对光的吸收能力,增加了光生载流子的数量,从而使更多的光生载流子参与光催化反应。综上,本文首次报道了八面体Cu2O纳米颗粒修饰TNTs复合物的光催化还原CO2的能力。在一定量的Cu2O纳米颗粒修饰下,该复合物在光催化还原CO2生成烃类反应中表现出高效性。经过一系列详细的表征和讨论,我们认为其高效性主要源于三个方面:(1) TNTs的管状结构为反应物的吸附提供了大量的活性位点,同时一维的管状结构更有利于光生载流子的运载,从而提高了电子和空穴的分离;(2) Cu2O纳米颗粒的修饰提高了催化剂对光的吸收,促进催化剂最大程度地利用太阳光;(3) TiO2和Cu2O之间导带以及价带位置的匹配,在减少光生载流子复合的同时也降低了TiO2价带上空穴的氧化能力,从而抑制了CO2还原产物的再氧化过程。

关 键 词:二氧化钛纳米管阵列  八面体氧化亚铜纳米颗粒  光催化二氧化碳还原  碳氢产物  光催化活性

Octahedral Cu2O-modified TiO2 nanotube arrays for efficient photocatalytic reduction of CO2
Abstract:A photocatalyst composed of TiO2 nanotube arrays (TNTs) and octahedral Cu2O nanoparticles was fabricated, and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and~5μm, respectively. The different amount of octahedral Cu2O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2O nanoparticles exhibited high efficiency in the photocatalysis, and the predominant hydrocarbon product was me‐thane. The methane yield increased with increasing Cu2O content of the catalyst up to a certain deposition time, and decreased with further increase in Cu2O deposition time. Insufficient deposi‐tion time (5 min) resulted in a small amount of Cu2O nanoparticles on the TNTs, leading to the dis‐advantage of harvesting light. However, excess deposition time (45 min) gave rise to entire TNT surface being most covered with Cu2O nanoparticles with large sizes, inconvenient for the transport of photo‐generated carriers. The highest methane yield under simulated solar and visible light irra‐diation was observed for the catalysts prepared at a Cu2O deposition time of 15 and 30 min respec‐tively. The morphology, crystallization, photoresponse and electrochemical properties of the cata‐lyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants, and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2O nanoparticles promoted light absorption, and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O‐modified TNT photocatalyst with high efficiency in the reduction of CO2, without requiring co‐catalysts or sacrificial agents.
Keywords:Titania nanotube arrays  Octahedral cuprous oxide nanoparticles  Photocatalytic carbon dioxide reduction  Hydrocarbon product  Photoactivity
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号