首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采用马来酸酐接枝聚丙烯(PP-g-MAH)对聚丙烯/聚对苯二甲酸乙二酯(PP/PET)共混体系进行增容,研究了增容前后复合体系的相形态和流变行为的变化.结果表明,共混体系中当PP组分为分散相时,增容剂能够显著减小PP液滴尺寸,使其形状松弛时间减小,变形与破裂的剪切敏感性降低;当共混体系两组分配比处于临界相反转点周围时,增容剂则会导致其内部部分双连续与“海-岛”结构共存的复杂相形态消失,低频区模量频率依赖性的增加表明体系内部界面结合程度的增加;而当共混体系中的PET组分为分散相时,增容剂的引入对体系结构流变学影响较小,表明增容效果不大.  相似文献   

2.
PP/PP-g-MAH/PA6共混物结构与可纺性研究   总被引:3,自引:0,他引:3  
运用DSC、SEM、纺丝成形等手段研究了增容剂聚丙烯接枝马来酸酐 (PP g MAH)对聚丙烯 聚酰胺 6(PP PA6 )共混物结构和性能的影响 .结果表明 ,共混物呈典型海岛型两相结构 ;增容剂PP g MAH与PA6之间的在位反应改善了PP PA6共混体系的相容性 ,使共混物中PA6的热结晶峰消失 ,PP的结晶生长速率和成核速率降低 ,可纺性提高  相似文献   

3.
POE-g-PMAH反应性增容PA1010/PP共混物的性能研究   总被引:4,自引:2,他引:2  
乙烯-辛烯共聚物-g-聚马来酸酐(POE-g-PMAH)作为反应性增容剂,采用熔体共混的方法制备了PA1010/PP共混物,通过扫描电镜(SEM)、力学性能、傅立叶变换红外光谱(FTIR)和示差扫描量热(DSC)测试,研究了POE-g-PMAH对PA1010/PP共混物的增容作用.结果表明,POE-g-PMAH的加入可以减小共混物的相区尺寸,当PA1010/PP/POE-g-PMAH=70/30/15时,分散相尺寸小而均匀;FTIR结果表明接枝在POE上的马来酸酐基团和PA1010在熔融共混期间发生了化学反应;DSC研究结果表明共混体系中PA1010和PP的结晶温度和结晶度随POE-g-PMAH的加入而降低,表明POE-g-PMAH的增容作用对PA1010和PP的结晶有抑制作用.力学性能测试结果表明随着POE-g-PMAH的增加,共混物的冲击强度逐渐增加,当POE-g-PMAH含量增加到15%时,干态冲击强度达到21.13 kJ/m2,是不加增容剂的3.1倍,而拉伸和弯曲强度可以保持较高水平.POE-g-PMAH的增容机理在于其支链中的马来酸酐能与PA1010中的胺基(NH2—)发生化学反应,而主链POE与PP有较好的亲和性,从而降低界面张力,减少相区尺寸,大幅度提高力学性能.  相似文献   

4.
采用熔体共混的方法制备了两种增容剂增容的聚酰胺1010/聚丙烯(PA1010/PP)共混物,通过扫描电镜(SEM)、力学性能和差示扫描量热(DSC)测试,对动态保压注射成型(动态)和普通注射成型(静态)中增容剂POE-g-MAH(马来酸酐接枝乙烯-辛烯共聚物)和PTW(乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物)对PA1010/PP共混物的增容作用进行了比较研究.研究结果表明,普通注射成型中,PTW增容体系具有更小的分散相粒子,在DSC测试中出现两个结晶峰,即出现异相成核结晶和均相成核结晶,具有更好的拉伸和冲击性能,增容作用更佳.动态保压注射成型中施加剪切可以提高所有共混物的拉伸强度、拉伸模量和缺口冲击强度,PTW和POE-g-MAH两种增容剂增容体系冲击性能相近,但POE-g-MAH增容体系的分散相相区尺寸减小明显、分布均匀性显著增加,材料冲击强度增加幅度更大,表明剪切更有利于POE-g-MAH增容作用的进行.两种增容剂增容作用的不同源于它们化学组成的不同引起的材料形态差别.  相似文献   

5.
PTW对PA1010/PP共混物的增容作用   总被引:2,自引:0,他引:2  
为了增加聚酰胺1010/聚丙烯(PA1010/PP)共混物的相容性,提高共混物的力学性能,采用一种新型的反应型增容剂乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物(PTW)进行增容,通过扫描电镜(SEM)、力学性能、傅里叶变换红外光谱(FTIR)和差示扫描量热(DSC)测试,研究了PTW对PA1010/PP共混物的增容作用.结果表明,随着PTW的加入,共混物的相区尺寸明显变小,当PA1010/PP/PTW质量比为70∶30∶7时,分散相尺寸细小而均匀,表明PTW有较好的增容作用.FTIR结果表明,PTW上的环氧基团和PA1010在熔融共混中发生了化学反应.DSC研究结果表明,PA1010的结晶温度随PTW的加入而降低,说明PTW对PA1010结晶有抑制作用.另外,PTW的加入使PP的结晶温度下降,当PTW质量分数为5%时出现2个结晶峰,即出现异相成核结晶和均相成核结晶,PP均相成核结晶的出现从另一个方面说明,在PA1010基体中分散相PP尺寸非常细小.当PTW质量分数为7%时共混物的力学性能最佳,干态冲击强度达到13.93kJ/m2,是未加增容剂时的2倍,拉伸和弯曲性能基本不变.PTW的增容机理在于其分子链中的甲基丙烯酸缩水甘油酯能与PA1010发生化学反应,而乙烯链段与PP有较好的亲和性,从而降低界面张力,减少相区尺寸,大幅度提高力学性能.  相似文献   

6.
马来酸酐接枝热塑性弹性体在PP/PA6共混物中的作用   总被引:10,自引:0,他引:10  
研究了马来酸酐接枝热塑性弹性体 (TPEg )作为增容剂对聚丙烯 (PP) 尼龙 6 (PA6 )共混体系的相容性、相态以及物理力学性能的影响 .研究结果表明TPEg的加入大大改善了PP PA6共混体系的相容性 ,且随TPEg含量的增大分散相粒径明显降低 ,共混物的韧性以及延展性大大提高 ,同时拉伸强度及模量仍保持较好的水平 .TPEg增容的PP PA6共混物的非等温结晶行为的研究表明 ,共混物中PP和PA6的结晶行为不同于各自纯的聚合物 ,PA6作为成核剂使PP的结晶温度提高 ;而PA6由于TPEg的加入 ,出现分级结晶现象 ,一级结晶温度略低于纯PA6的结晶温度 ,且随TPEg含量增大结晶受阻 ,二级结晶温度与PP的接近 .由于PP、PA 6以及TPEg之间存在较强的相互作用 ,三元共混物中PP及PA6的玻璃化转变温度分别较其纯聚合物升高 .基于上述结果 ,提出了本共混体系的结构模型  相似文献   

7.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

8.
朱德钦  生瑜  童庆松  王真 《应用化学》2014,31(8):885-891
在转矩流变仪中用熔融接枝法制备马来酸酐(MAH)和苯乙烯(St)接枝聚丙烯(PP)-PP-g-(MAH/St)和PP-g-MAH,将其作为聚丙烯/木粉复合材料的相容剂。 FTIR证实MAH和St单体与PP发生接枝反应。 用SEM和DSC等手段考察两种相容剂对PP/木粉复合材料微观形貌和结晶性能的影响,探索了各种PP/木粉复合材料加工和力学性能不同的内在原因。 SEM显示,PP-g-(MAH/St)改性木粉比PP-g-MAH改性木粉在PP基体中分散性更佳,木粉与PP的界面更加模糊,相容性进一步改善。 DSC结果表明,PP-g-(MAH/St)改性体系可增强木粉对PP的异相成核作用,提高结晶温度和结晶度。 复合材料的加工和力学性能测试结果表明,PP-g-(MAH/St)改性效果明显优于PP-g-MAH。 复合材料的熔体质量流动速率随相容剂用量的增加而逐步下降,PP-g-(MAH/St)改性体系拉伸强度和弯曲强度却逐步上升,并在相容剂用量为4.8 g/100 g PP时达到极值。 此时其拉伸强度达40.62 MPa,分别是未改性体系和PP-g-MAH改性体系的1.29和1.17倍;其弯曲强度达45.72 MPa,分别是未改性体系和PP-g-MAH改性体系的1.23和1.59倍;而无缺口冲击强度却在相容剂用量为3.6 g/100 g PP时达到极值13.35 kJ/m2,分别是未改性体系和PP-g-MAH改性体系的1.62倍和1.42倍。  相似文献   

9.
SEP对PP/PS共混物的增容作用   总被引:3,自引:0,他引:3  
游长江 《广州化学》2001,26(3):7-14
研究了苯乙烯 -乙烯 /丙烯二嵌段共聚物 (SEP)对聚丙烯 /聚苯乙烯 (PP/PS)共混物的形态和力学性能的影响。结果表明 ,SEP在PP/PS共混物中作为增容剂 ,降低了分散相的聚结 ,减小了分散相的平均粒子尺寸 ,大大改变了共混物的形态 ,提高了共混物的力学性能 ,对PP/PS( 2 0 /80 )共混物的增容作用较为显著  相似文献   

10.
通过熔融共混法制备了苯乙烯-马来酸酐共聚物(SMA)增容的尼龙6(Nylon-6)/ABS共混物.采用TEM、SEM、FTIR等研究了SMA增容的Nylon-6/ABS共混物的相形态与性能.发现在Nylon-6和ABS的简单共混体系中,分散相易聚集,相界面清晰,断裂面光滑,呈脆性断裂,相容性差.加入少量SMA后,共混物由共连续相结构转变为典型的"海-岛"结构,分散相分布均匀,界面粘接程度增加,表明SMA对Nylon-6/ABS体系有显著的增容效果.  相似文献   

11.
Dynamically cured polypropylene (PP)/epoxy blends compatibilized with maleic anhydride grafted PP were prepared by the curing of an epoxy resin during melt mixing with molten PP. The morphology and crystallization behavior of dynamically cured PP/epoxy blends were studied with scanning electron microscopy, differential scanning calorimetry, and polarized optical microscopy. Dynamically cured PP/epoxy blends, with the structure of epoxy particles finely dispersed in the PP matrix, were obtained, and the average diameter of the particles slightly increased with increasing epoxy resin content. In a study of the nonisothermal crystallization of PP and PP/epoxy blends, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of the PP component in the PP/epoxy blends. The isothermal crystallization kinetics of PP and dynamically cured PP/epoxy blends were described by the Avrami equation. The results showed that the Avrami exponent of PP in the blends was higher than that of PP, and the crystallization rate was faster than that of PP. However, the crystallization rate decreased when the epoxy resin content was greater than 20 wt %. The crystallization thermodynamics of PP and dynamically cured PP/epoxy blends were studied according to the Hoffman theory. The chain folding energy for PP crystallization in dynamically cured PP/epoxy blends decreased with increasing epoxy resin content, and the minimum of the chain folding energy was observed at a 20 wt % epoxy resin content. The size of the PP spherulites in the blends was obviously smaller than that of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1181–1191, 2004  相似文献   

12.
Crystallization behavior of polypropylene/polycarbonate blends   总被引:2,自引:0,他引:2  
Crystallization behavior and morphology of polypropylene (PP)/polycarbonate (PC) blends have been studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In the study of non-isothermal crystallization of the blends, the phenomenon of multiple crystallization peaks of PP/PC blends was related to the blend morphology in which PP was the dispersed phase as small droplets in the PC matrix. The phenomenon of a single crystallization peak of the PP/PC blends was related to the blend morphology in which PP was a continuous phase; in that case the crystallization peak temperatures of the blends were higher than that of the PP. The isothermal crystallization kinetics of the PP and PP/PC (80/20) blend were described by the Avrami equation. The results showed that the Avrami exponent of the PP/PC (80/20) blend was higher than that of the PP, and the crystallization rate of the PP/PC (80/20) blend was faster than that of the PP. The crystallization rate of the PP and PP/PC (80/20) blend were calculated according to the Hoffmann theory. Both the PP and PP/PC (80/20) blend had maximum crystallization rates. The temperature at the maximum crystallization rate for the PP/PC (80/20) blend was higher than that of the PP.  相似文献   

13.
The morphology and crystallization behavior of blends of polypropylene (PP) and an ethylene-based thermoplastic elastomer (TPO) were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The SEM images showed a two-phase morphology for these blends. As TPO was partially crystalline, two distinct peaks were observed in both heating and cooling scans of DSC. The crystallization temperature of TPO in blends was higher than pure TPO. In contrast, the crystallization temperature of PP in blends was lower than pure PP. The crystallization behavior of blends was modeled by Avrami equation. It was observed that the presence of TPO accelerated the growth rate of crystals of PP in PP/TPO blends.  相似文献   

14.
The crystallization, melting behavior, and morphology of Polypropylene (PP) and PP/Novolac blends were studied by scanning electron microscopy, wide angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscope. The results showed that the crystallization of PP in PP/Novolac blends was strongly influenced by crystallization temperature, particles size of Novolac, crosslinking, and compatibilizer maleic anhydride‐grafted PP. The Novolac resin could not only affect the crystal structure, but also acted as effective nucleating agents, accelerating the crystallization of PP in the PP/Novolac blends. And the smaller the Novolac particles were, the more effective were the nucleating agent for PP crystallization. Avrami equation was used to analyze the isothermal crystallization kinetics of PP and PP/Novolac blends. The influences of curing and compatibilizer on the crystallization behavior of PP were rather complicated. The crystallization thermodynamics were estimated using the Hoffman theory. The incorporation of cured Novolac and compatibilizer evidently decreased the chain folding energy of PP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3288–3303, 2006  相似文献   

15.
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP(PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilizer for the PP/PEO blends in which PP-MA also had some compatibilization. The crystallization of the blends was affected by the compatibility between PP and PEO. The interfacial behavior of the compatibilizers had an important effect on crystallization behavior of the PP/PEO blends. PEO showed fractionated crystallization in the PP/PEO blends. This behavior was studied from the view point of the theory of fractionated crystallization. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Non-isothermal crystallization and crystalline structure Of PP/POE blends   总被引:4,自引:0,他引:4  
Polypropylene (PP) /ethylene-octene copolymer (POE) blends with different content of POE were prepared by mixing chamber of a Haake torque rheometer. The crystallization behaviors and crystal structure of PP/POE blends were systematically investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized optical microscopy (POM). The results showed that PP spherulites became defective and the crystallization behavior was influenced intensely with the introduction of POE. At the low content of POE, the addition of POE decreases the apparent incubation period (Δt i) and the apparent total crystallization period (Δt c) of PP in blends due to the heterogeneous nucleation of POE, and small amount of β-form PP crystals form because of the existence of POE. However, at high content of POE, the addition of POE decreases the mobility of PP segments due to their strong intermolecular interaction and chain entanglements, resulting in retarding the crystallization of PP, decreasing in the amount of β-form PP crystals, and increasing in Δt i and Δt c of PP in blends.  相似文献   

17.
张杰 《高分子科学》2016,34(2):164-173
The crystallization behavior, rheological behavior, mechanical properties and microstructures of injection molded isotactic polypropylene(i PP), polypropylene random copolymer(co-PP) and i PP/co-PP blends were investigated. Differential scanning calorimetry(DSC) and dynamic rheological analysis illustrated that i PP and co-PP were compatible in the blends and co-PP uniformly dispersed in the i PP phase. Polarizing optical microscope(POM) was adopted to observe the crystal size and morphology evolution. The results of mechanical properties and scanning electron microscopy(SEM) indicated that the crystal size of i PP in i PP/co-PP blends(10 wt% co-PP + 90 wt% i PP and 30 wt% co-PP + 70 wt% i PP) radically decreased after the incorporation of co-PP. During crystallization, the molecular chain segments of co-PP could penetrate i PP spherulites and form a network-like crystalline structure. The network-like crystal structure could effectively transmit stress and consume more energy to overcome intermolecular forces to resist stretching. In this way, the strength would improve to a certain degree. The impact fracture mechanism of i PP/co-PP blends is quasi ductile fracture by multiple crazes. Our work discovered that the blends containing 10 wt% and 30 wt% of co-PP exhibited prominent toughness and reinforcement.  相似文献   

18.
用DSC和傅里叶红外(FTIR)光谱表征PEO/PMMA和PEO/PVA共混体系的结晶行为。发现PEO/PVA体系的结晶度与其组成的变化是一致的;而PEO/PMMA体系的结晶度随非晶组分增加而下降的速度,从与组成变化一致到比后者快,但又随时间而改变。对此结晶/非晶共混体系的结晶度随组成和时间而变化的现象,可用体系的玻璃化转变温度(T_g)来解释。  相似文献   

19.
The fractionated crystallization behavior of polypropylene (PP) droplets in its 20/80 blends with polystyrene (PS) in the presence of hydrophilic or hydrophobic fumed silica nanoparticles was studied by using differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. It was found that the fractionated crystallization of PP droplets in the PS matrix was promoted by adding a low content of hydrophobic or hydrophilic nanoparticles due to their morphological refinement effect. However, discrepancies in the fractionated crystallization behavior of PP droplets occurred as the nanoparticle content increased. The crystallization became dominated by the heterogeneous nucleation effect of high content of hydrophilic nanoparticles, which possibly migrated into PP droplets during mixing and significantly suppressed their fractionated crystallization. In contrast, the morphological refinement effect still played a dominated role in promoting the fractionated crystallization of PP droplets in PP/PS blends filled with higher content hydrophobic nanoparticles as a result of the efficiently morphological refinement effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号