首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
PP/PP-g-MAH/PA6共混物结构与可纺性研究   总被引:3,自引:0,他引:3  
运用DSC、SEM、纺丝成形等手段研究了增容剂聚丙烯接枝马来酸酐 (PP g MAH)对聚丙烯 聚酰胺 6(PP PA6 )共混物结构和性能的影响 .结果表明 ,共混物呈典型海岛型两相结构 ;增容剂PP g MAH与PA6之间的在位反应改善了PP PA6共混体系的相容性 ,使共混物中PA6的热结晶峰消失 ,PP的结晶生长速率和成核速率降低 ,可纺性提高  相似文献   

2.
PTW对PA1010/PP共混物的增容作用   总被引:2,自引:0,他引:2  
为了增加聚酰胺1010/聚丙烯(PA1010/PP)共混物的相容性,提高共混物的力学性能,采用一种新型的反应型增容剂乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物(PTW)进行增容,通过扫描电镜(SEM)、力学性能、傅里叶变换红外光谱(FTIR)和差示扫描量热(DSC)测试,研究了PTW对PA1010/PP共混物的增容作用.结果表明,随着PTW的加入,共混物的相区尺寸明显变小,当PA1010/PP/PTW质量比为70∶30∶7时,分散相尺寸细小而均匀,表明PTW有较好的增容作用.FTIR结果表明,PTW上的环氧基团和PA1010在熔融共混中发生了化学反应.DSC研究结果表明,PA1010的结晶温度随PTW的加入而降低,说明PTW对PA1010结晶有抑制作用.另外,PTW的加入使PP的结晶温度下降,当PTW质量分数为5%时出现2个结晶峰,即出现异相成核结晶和均相成核结晶,PP均相成核结晶的出现从另一个方面说明,在PA1010基体中分散相PP尺寸非常细小.当PTW质量分数为7%时共混物的力学性能最佳,干态冲击强度达到13.93kJ/m2,是未加增容剂时的2倍,拉伸和弯曲性能基本不变.PTW的增容机理在于其分子链中的甲基丙烯酸缩水甘油酯能与PA1010发生化学反应,而乙烯链段与PP有较好的亲和性,从而降低界面张力,减少相区尺寸,大幅度提高力学性能.  相似文献   

3.
采用偏光显微镜和相差显微镜详细研究PP/PMMA不相容聚合物共混物体系和PP/PMMA/PP-g-PMMA增容共混体系的结晶和相形态.偏光显微照片的研究结果表明,增容剂PP-g-MAH中PP结晶需要克服更多的能垒,导致PP结晶形态变得不完善,球晶尺寸变小.比较PP/PMMA和PP/PMMA/PP-g-MAH的相差显微照片可以看出,由于增容剂的加入,PP与PMMA相之间的界面变得模糊,两相的相容性变好.随着PP-g-MAH中MAH接枝率的增加,PMMA分散相的尺寸减小且变得均匀;当增容剂的接枝率为2.41%,添加的质量分数为4.71%,PP/PMMA共混体系中PMMA分散相的相?尺寸可达最小.PP-g-MAH作为反应型增容剂,一方面与PP在界面区域产生共晶;另一方面,MAH极性基团与PMMA的极性基团间产生的强的化学键合作用,使得界面区域的PP-g-MAH分子采取有利于降低构象熵的构象来起到增容作用.PP/PMMA共混物在130℃等温结晶的结果显示,PMMA相对PP的结晶形态的影响较小,PP结晶呈现典型的均相成核特征.PP/PMMA共混体系中加入PP-g-MAH,PP结晶尺寸减少.与非等温结晶相比,等温结晶的PP/PMMA共混物中PMMA相区尺寸明显偏大.  相似文献   

4.
POE-g-PMAH反应性增容PA1010/PP共混物的性能研究   总被引:4,自引:2,他引:2  
乙烯-辛烯共聚物-g-聚马来酸酐(POE-g-PMAH)作为反应性增容剂,采用熔体共混的方法制备了PA1010/PP共混物,通过扫描电镜(SEM)、力学性能、傅立叶变换红外光谱(FTIR)和示差扫描量热(DSC)测试,研究了POE-g-PMAH对PA1010/PP共混物的增容作用.结果表明,POE-g-PMAH的加入可以减小共混物的相区尺寸,当PA1010/PP/POE-g-PMAH=70/30/15时,分散相尺寸小而均匀;FTIR结果表明接枝在POE上的马来酸酐基团和PA1010在熔融共混期间发生了化学反应;DSC研究结果表明共混体系中PA1010和PP的结晶温度和结晶度随POE-g-PMAH的加入而降低,表明POE-g-PMAH的增容作用对PA1010和PP的结晶有抑制作用.力学性能测试结果表明随着POE-g-PMAH的增加,共混物的冲击强度逐渐增加,当POE-g-PMAH含量增加到15%时,干态冲击强度达到21.13 kJ/m2,是不加增容剂的3.1倍,而拉伸和弯曲强度可以保持较高水平.POE-g-PMAH的增容机理在于其支链中的马来酸酐能与PA1010中的胺基(NH2—)发生化学反应,而主链POE与PP有较好的亲和性,从而降低界面张力,减少相区尺寸,大幅度提高力学性能.  相似文献   

5.
多组分单体接枝聚丙烯/尼龙6反应共混物结晶行为研究   总被引:10,自引:0,他引:10  
用多组分熔融接枝的方法将甲基丙烯酸缩水甘油酯 (GMA)和苯乙烯 (St)共同接枝到聚丙烯 (PP)上 ,制得具有较高GMA接枝率的多单体接枝聚丙烯 ,PP g (GMA co St) .将PP g (GMA co St)与尼龙 6 (PA6 )进行共混 ,利用扫描电镜 (SEM) ,差示扫描量热计 (DSC)和广角X射线衍射 (WAXD)对共混物的形态和结晶进行了研究 .在共混过程中 ,PP g (GMA co St)与PA6反应原位生成了PP g PA6 ,有效改善了共混物的相容性 ,分散相尺寸明显减小 .在PP g (GMA co St) PA6为 3 7的体系中 ,PP g (GMA co St)出现分级结晶现象 ,其在较低温度下的结晶属于均相成核结晶 .在PP g (GMA co St) PA6为 7 3的体系中 ,由于PA6相分散细微 ,在通常结晶温度下不结晶 ,而是在低温下均相成核与PP g (GMA co St)同时结晶 .WAXD证实体系中接枝PP ,PA6为分别结晶 ,无共晶或新的晶型产生  相似文献   

6.
利用扫描电子显微镜(SEM)和X射线能谱仪(EDS)对聚丙烯/聚氯乙烯(PP80/PVC20)二元体系,以及聚丙烯多单体接枝物[PP-g-(St-co-MMA)]/PP/PVC三元体系的相容性进行了研究。由X射线能谱微区分析得到了共混物中氯元素面分布图。对氯元素面分布进行了粒径分布统计和面积计算。实验结果表明:在PP80/PVC20共混物100份中加入6份PP-g-(St-co-MMA)增容剂时,增容效果最好;进一步增加PP-g-(St-co-MMA)含量时,PP/PVC的相容性反而降低。差示扫描量热仪(DSC)的实验结果也佐证了SEM和EDS的实验结果。  相似文献   

7.
超细聚酰胺6粒子增韧聚丙烯体系的研究   总被引:7,自引:0,他引:7  
陈哲  王琪  徐僖 《高分子学报》2001,37(1):13-16
采用磨盘形力化学反应器室温下制备了聚丙烯 (PP) /聚酰胺 6 (PA6 )超细粉体 ,研究了其粒度、粒度分布及PA6超细粒子填充对PP力学性能的影响 .结果表明 ,磨盘形力化学反应器可有效实现PP/PA6的粉碎 ,所得粉体平均粒径达微米级 ,初级粒子尺寸甚至可达纳米级 ,粒度分布呈双峰分布状态 .在PA6和PP熔点之间的温度下加工可制得PA6超细粒于填充的PP/PA6共混体系 ,其力学性能明显好于PP/PA6简单共混体系 ,30 %PA6用量下 ,拉伸强度由 2 3 .2MPa提高至 2 9 3MPa ,Izod缺口冲击强度由 4.6 2kJ/m2 提高到6 .34kJ/m2 .形貌分析结果表明 ,由于基本保持了PA6超细粉体的原始尺寸 ,填充体系中PA6相区尺寸小、分布均匀 ,与使用增容剂得到的相区结构类似 .  相似文献   

8.
以碘代等规聚丙烯为大分子反应中间体,通过季胺化亲核取代反应和点击化学反应,制备了N-甲基咪唑聚丙烯离聚体(IA)和邻巯基苯胺盐酸盐聚丙烯离聚体(IB),并将其作为等规聚丙烯/生物基尼龙11 (i PP/PA11)共混体系的增容剂.通过动态力学分析(DMA)、扫描电镜(SEM)和力学性能测试,对i PP/PA11/聚丙烯离聚体三元共混体系的相形态与性能进行了系统研究. DMA测试结果显示,2种聚丙烯离聚体使i PP/PA11共混体系的玻璃化转变温度Tg相互靠近;SEM结果显示,离聚体的加入使分散相粒子尺寸显著减小,两相界面作用力增加;力学性能测试表明,i PP/PA11/IA、i PP/PA11/IB三元共混体系的拉伸强度和冲击强度保持较好的水平.以上研究结果表明,IA和IB均可以显著改善i PP/PA11共混体系的相容性.  相似文献   

9.
采用熔体共混的方法制备了两种增容剂增容的聚酰胺1010/聚丙烯(PA1010/PP)共混物,通过扫描电镜(SEM)、力学性能和差示扫描量热(DSC)测试,对动态保压注射成型(动态)和普通注射成型(静态)中增容剂POE-g-MAH(马来酸酐接枝乙烯-辛烯共聚物)和PTW(乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物)对PA1010/PP共混物的增容作用进行了比较研究.研究结果表明,普通注射成型中,PTW增容体系具有更小的分散相粒子,在DSC测试中出现两个结晶峰,即出现异相成核结晶和均相成核结晶,具有更好的拉伸和冲击性能,增容作用更佳.动态保压注射成型中施加剪切可以提高所有共混物的拉伸强度、拉伸模量和缺口冲击强度,PTW和POE-g-MAH两种增容剂增容体系冲击性能相近,但POE-g-MAH增容体系的分散相相区尺寸减小明显、分布均匀性显著增加,材料冲击强度增加幅度更大,表明剪切更有利于POE-g-MAH增容作用的进行.两种增容剂增容作用的不同源于它们化学组成的不同引起的材料形态差别.  相似文献   

10.
研究了富氧气氛中高密度聚乙烯(HDPE)的γ-射线辐照氧化及其与尼龙-6(PA6)的共混增容和共混材料的阻隔性能.FT-IR测试结果表明, 经γ-射线辐照的HDPE与PA6发生了化学反应或产生了弱相互作用.SEM照片显示4γHDPE (4h辐照,66Gy/min)与PA6具有良好的相容性,PA6在共混体系中呈层状分布.共混材料的阻隔性能测试结果表明4γHDPE/PA6共混物对二甲苯的阻隔性较HDPE/PA6共混物有明显提高.力学性能测试显示4γHDPE/PA6共混物力学性能优良.  相似文献   

11.
The effects of maleated thermoplastic elastomer (TPEg) on morphological development of polypropylene (PP)/polyamide 6 (PA6) blends with a fixed PA6 content (30 wt %) were investigated. For purpose of comparison, nonmaleated thermoplastic elastomer (TPE) was also added to the above binary blends. A comparative study of FTIR spectroscopy in above both ternary blends confirmed the formation of in situ graft copolymer in the PP/PA6/TPEg blend. Dynamic mechanical analysis (DMA) indicated that un‐like TPE, the incorporation of TPEg remarkably affected both intensity and position of loss peaks of blend components. Scanning electron microscopy (SEM) demonstrated that PP/PA6/TPE blends still exhibited poor interfacial adhesion between the dispersed phase and matrix. However, the use of TPEg induced a finer dispersion and promoted interfacial adhesion. Transmission electron microscopy (TEM) for PP/PA6/TPEg blends showed that a core‐shell structure consisting of PA6 particles encapsulated by an interlayer was formed in PP matrix. With the concentration of TPEg increasing, the dispersed core‐shell particles morphology was found to transform from discrete acorn‐type particles to agglomerate with increasing degree of encapsulation. The modified Harkin's equation was applied to illustrate the evolution of morphology with TPEg concentration. “Droplet‐sandwiched experiments” further confirmed the encapsulation morphology in PP/PA6/TPEg blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1050–1061, 2006  相似文献   

12.
采用磨盘形力化学反应器,在室温下制备了PA6/PP超细混合粉体,与SBS共混制得PA6/PP/SBS共混物,测定了材料的力学性能并用TEM研究了材料在不同加工温度下相结构的变化.结果表明,通过固相力化学粉碎制备的PA6/PP混合微粉,改善了PA6与PP和SBS的相容性,促进了PA6及PP的分散和与SBS的相界面结合.在微粉填充量为4%~8%(质量分数)时,材料的拉伸强度大幅度提高,扯断伸长率保持不变.加工温度变化引起材料相结构的变化对材料性能产生显著影响.在PP熔融温度下加工,PP粒子产生粘连形成链状结构,可提高材料的力学性能.  相似文献   

13.
通过挤出和注射成型制备了滑石粉(Talc)填充的尼龙6/聚丙烯/马来酸酐接枝聚丙烯(PA6/PP/MAPP)合金, 研究了Talc和混炼顺序(一步法和PA6母料法)对合金相形态和力学性能的影响. 场发射扫描电镜(FESEM)分析结果表明, 添加Talc后注射样条中心部分的PP相由球状转变为沿流动方向取向的有分支的条状结构, 且用PA6母料法制样比用一步法制样的相形态更为精细. 溶解PA6相后对PP相进行热重分析(TGA), 确定了Talc在PA6相和PP相中的分布比例, Talc选择性分布于PA6相中. PA6母料法中Talc的分散好于一步法. 研究了材料的拉伸、 弯曲、 冲击、 热变形温度和动态力学性能, Talc的添加能够明显提高材料的刚性, 且母料法样品的性能优于一步法样品.  相似文献   

14.
PP-g-(GMA-co-St)对PA6/PC共混物的反应增容作用   总被引:10,自引:0,他引:10  
用红外、扫描电镜、熔体流动速率和力学性能等测试方法,研究了甲基丙烯酸缩水甘油酯(GMA)和苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(GMA-co-St)]对PA6/PC共混物的反应增容作用.研究结果表明,在熔融共混过程中,PP-g-(GMA-co-St)中的环氧基与PA6的端氨基及PC的端羟基原位生成的接枝共聚物有效地降低了共混物相间的界面张力,明显提高了共混物相界面的粘着力.少量的PP-g-(GMA-co-St)就能使PA6和PC的相容性得到显著改善.当PP-g-(GMA-co-St)的质量分数为10%时,共混物分散相的相区尺寸细化到0.2μm,其力学性能也有较大提高.PA6/PC/PP-g-(GMA-co-St)共混物的力学性能均衡,达到了弹性体增韧体系难以达到的效果.即使PP-g-(GMA-co-St)组分含量为20%时,共混物仍能保持较好的力学性能,特别是在共混物的韧性得以提高的同时,其强度和伸长率也提高.  相似文献   

15.
聚苯硫醚/尼龙6共混物界面对结晶行为的影响   总被引:7,自引:0,他引:7  
高分子作为材料时 ,其力学性能受其结晶形态的影响 ,而其结晶形态与其结晶行为有关 .结晶性聚合物共混物中结晶组分由于第二组分存在 ,改变了结晶组分在熔体时的化学与物理环境 .因此 ,其结晶组分的结晶行为不仅取决于两组分在熔体时的相容性 ,而且与第二组分是否起到异相晶核作用和 /或两组分间界面是否诱导成核作用有关 ,从而影响共混物中结晶组分的结晶行为 ,导致共混物力学性能的改变[1~ 4] .在PPS/PA6共混物中 ,由于PPS的熔点和熔体结晶温度都比PA6的高 ,共混物熔体降温结晶PPS是在PA6熔体存在下发生结晶 ,而PA6是在…  相似文献   

16.
通过提高双螺杆挤出机螺杆转速的方法,研究了熔融挤出过程中高剪切应力对马来酸酐(MAH)官能化三元乙丙橡胶(EPDM)与高密度聚乙烯(HDPE)共混物的接枝率、熔体流动速率及凝胶含量的影响.随着双螺杆挤出机螺杆转速的增加,强烈的机械剪切应力引发EPDM/HDPE共混物大分子链的断链反应形成大分子自由基,从而引发接枝反应制...  相似文献   

17.
用DSC、~(13)C-NMR、SEM和WAXD等方法研究了IPP/HDPE/EPDM三元共混体系的组分分布、相容性和结晶行为。实验结果表明,EPDM与PE组分的相容性优于与PP组分的相容性,多数EPDM分子链段能够分布在PE组分中;EPDM含量为15%时,共混物相容性最好,SEM照片呈现晶体微区的互连或网络状结构;随EPDM含量增加,总结晶度X_c减小,其中PE组分结晶度X_(cE)有较大幅度地降低,PP组分结晶度X_(cp)基本没有变化,这可以根据EPDM和PE、PP之间相容性的差异以及PE、PP两组分在冷却过程中不同的结晶行为来解释。  相似文献   

18.
PA6/HIPS/PP-g-(GMA-co-St)反应共混体系的研究   总被引:7,自引:0,他引:7  
通过扫描电镜、热分析、熔体流动速率、熔融扭矩和力学性能等测试方法研究了甲基丙烯酸缩水甘油酯(GMA)和苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(GMA-co-St)]对PA6/HIPS共混物的熔融流变性能、结晶行为、相形态和力学性能的影响.结果表明,在熔融共混过程中,PP-g-(GMA-co-St)中的环氧基与PA6的端氨基原位生成的接枝共聚物有效地降低了共混物的界面张力,提高了共混物的界面粘着力,使共聚物的流动速率降低,熔融扭矩提高;PA6分子链的规整性降低,结晶完善性变差.在PP-g-(GMA-co-St)的质量分数为10%时,共混物分散相的尺寸明显减少,力学性能得到较大提高;其中冲击强度超过纯PA6,达到HIPS水平.通过反应共混,制备了力学性能均衡的PA6/HIPS/PP-g-(GMA-co-St)共混物合金.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号