首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu S  Xie Z  Wu X  Lin X  Guo L  Chen G 《Journal of chromatography. A》2005,1092(2):258-262
In this paper, the pressurized capillary electrochromatography (pCEC) with UV detection was utilized for the separation and determination of three structurally related estrogens, such as diethylstilbestrol (DES), hexestrol (HEX) and dienestrol (DE), which were difficult to be separated by capillary electrophoresis (CE) and HPLC due to their similarity in the structure and charge-to-mass ratios. Experiments were carried out in a commercially available pCEC instrument using a capillary column packed with 3 microm octadecyl silica (ODS). Surfactant sodium dodecyl sulfate (SDS) was introduced in the mobile phase to enhance the speed of analysis. The effective factors on the retention time and separation resolution, such as the applied voltage, supplementary pressure, the pH and the concentration of the buffer solution, the concentration of SDS, and the content of acetonitrile in the mobile phase, were evaluated. Based on the investigation, 31% (v/v) acetonitrile and 69% (v/v) of 10 mmol/L phosphate buffer (pH 6.5) containing 1.0 mmol/L SDS at an applied voltage of -12 kV and a supplementary pressure of 1000 psi were found to be the optimal conditions for pCEC to separate the three estrogens. The method also had been applied to the analysis of fish muscle samples spiked with estrogens.  相似文献   

2.
A pressurized electrochromatography (pCEC) instrument with gradient capability was used in this work for separation of peptides. Three separation modes, namely, pCEC, high-performance liquid chromatography and capillary electrophoresiscan be carried out with the instrument. In pCEC mode, the mobile phase is driven by both electroosmotic flow and pressurized flow, facilitating fine-tuning in selectivity of neutral and charged species. A continuous gradient elution can be carried out conveniently on this instrument, which demonstrates that it is more powerful than isocratic pCEC for separation of complicated samples. The effects of applied voltage, supplementary pressure and ion-pairing agents on separation of peptides in gradient pCEC were investigated. The effects of flow-rate of the pump and the volume of the mixer on resolution were also evaluated.  相似文献   

3.
A system enabling coupling of pressurized capillary electrochromatography (pCEC) with off-column amperometric detection (AD) is reported in which conduction of the current in pCEC was achieved through a cellulose acetate-coated porous polymer joint, and the effect of the high-voltage field applied to pCEC for AD was also eliminated. Effects of supplementary pressure on the porous polymer joint and the effects on AD of capillary columns of different i.d. were investigated. The performance of the pCEC–AD system with the porous polymer joint was evaluated with phenol and hydroquinone using sulfonated stearyl methacrylate monolithic columns. The separation efficiency of the column in pCEC–AD, using the proposed off-column detection with the cellulose acetate membrane joint, was comparable with that of pCEC–UV using on-column detection. Compared with end-column detection using a 50 μm i.d. capillary column without a joint, a higher signal-to-noise ratio was achieved, even using a 100 μm i.d. capillary column with a joint. Successful separation and detection of dopamine and epinephrine were also achieved by use of this system.  相似文献   

4.
Amnesic shellfish poisoning (ASP) is a potentially lethal human toxic syndrome which is caused by domoic acid (DA) that originates in marine phytoplankton belonging to the Pseudonitzschia genus. A confirmatory and sensitive procedure has been developed and validated for the determination of DA in shellfish. The proposed method includes pressurised liquid extraction (PLE) with methanol/acetone (9:1), florisil clean-up purification inside the PLE extraction cell and detection by liquid chromatography (LC) coupled to electrospray ionization in positive mode tandem mass spectrometry (ESI-MS-MS). Comparison of ionization sources (ESI, atmospheric pressure ionization (APCI) atmospheric pressure photoionization (APPI) and combined APCI/APPI) were carried out in order to improve the analytical signal. The main parameters affecting the performance of the different ionization sources and PLE parameters were previously optimised using statistical design of experiments (DOE). Linear calibrations were obtained using mussel tissue extracts 0.05-5 microg DA/ml (R2>0.999). The limits of detection (LOD) and quantitation (LOQ) of the method were 0.2 and 0.5 microg/g respectively and recoveries ranged from 81 to 95%. This method was successfully applied to determine DA levels in 46 shellfish samples collected from Valencian (Spain) supermarkets, showing high sample throughput.  相似文献   

5.
毛细管电色谱和加压毛细管电色谱的进展与应用   总被引:2,自引:1,他引:1  
毛细管电色谱(CEC)以内含色谱固定相的毛细管为分离柱,以电渗流为驱动力,既可以分离带电物质也可以分离中性物质。它结合了毛细管电泳和高效液相色谱两者的优点,兼具高柱效、高分辨率、高选择性和高峰容量的特点,同时具有色谱和电泳的双重分离机理。然而,“纯粹”的电色谱在实际应用中有着天然的弱点,即: 在电流通过毛细管柱中的流动相时容易产生气泡(焦耳热作用),从而使电流中断和电渗流停止,毛细管柱必须被重新用流动相润湿后方能再次使用。加压毛细管电色谱(pCEC)将液相色谱中的压力流引入CEC系统中,不仅解决了气泡、干柱等问题,而且实现了定量阀进样和二元梯度洗脱。CEC和pCEC作为微分离领域的两种前沿技术,满足了当前复杂样品分析和分析仪器微型化的需求,近年来获得了广泛的关注。本文综述了这两种技术近来的发展,包括仪器、色谱固定相的发展,总结了其在生命科学、药物分析、食品安全以及环保样品分析等方面的应用进展,评述了各方法的特点,并展望了CEC和pCEC今后的发展和应用前景。  相似文献   

6.
Liu S  Wu X  Xie Z  Lin X  Guo L  Yan C  Chen G 《Electrophoresis》2005,26(12):2342-2350
An improved technique, pressurized capillary electrochromatography (pCEC) coupling with end-column amperometric detection (AD), was developed and used for the separation and determination of estrogens. The effects of pH value, composition of mobile phase, concentration of the surfactant sodium dodecyl sulfate (SDS) and applied voltage on separation were investigated. The electrochemical oxidation of diethylstilbestrol (DES), dienestrol (DE), and hexestrol (HEX) could be reliably monitored with a carbon electrode at 0.9 V (vs. Ag/AgCl). The pCEC analyses were performed on a capillary separation column packed with 3 microm C18 particles with an acetonitrile/water (31%: 69%) mobile phase containing Tris buffer (5 mmol/L, pH 4.5) and 4 mmol/L SDS. High voltage up to 12 kV reduced the retention time dramatically and still provided a baseline resolution. In addition, supplementary pressure prevented bubble formation and provided reliability and reproducibility of the pCEC performance. The detection limits for the three estrogens ranged from 1.2 to 2.2x10(-7) mol/L, about 10 20-fold lower than those obtained with pCEC-UV detection. To evaluate the feasibility and reliability of this system, the proposed pCEC-AD method was further demonstrated with fish muscle samples spiked with estrogens.  相似文献   

7.
Method validation was conducted for an enzyme-linked immunosorbent assay (ELISA) for the determination of domoic acid (DA) toxins, known to give amnesic shellfish poisoning (ASP) symptoms, in shellfish. The calibration curve range of the assay is approximately 10-260 pg/mL, with a dynamic working range for DA toxins in shellfish from 0.01 to at least 250 mg/kg. The ASP ELISA showed no significant cross-reactivity to structural analogs, and proved to be robust to deliberate alterations of the optimal running conditions. The shellfish matrix effects observed with mussels, oysters, and scallops were eliminated by diluting shellfish extracts 1:200 prior to analysis, leading to a limit of detection at 0.003 mg/kg. Thirteen blank shellfish homogenates were spiked with certified mussel material containing DA to levels in the range of 0.1-25 mg DA/kg, and analyzed in quadruplicate on 3 different days. The relative standard deviation (RSD) under intra-assay repeatability conditions ranged from 6.5 to 13.1%, and under interassay repeatability conditions the RSD ranged from 5.7 to 13.4%, with a mean value of 9.3%. The recoveries ranged from 85.5 to 106.6%, with a mean recovery of 102.2%. A method comparison was conducted with liquid chromatography with ultraviolet detection, using naturally contaminated scallop samples (n = 27) with DA levels at 0-244 mg/kg. The overall correlation coefficient was 0.960 and the slope of the regression was 1.218, indicating a good agreement between the methods.  相似文献   

8.
Wu X  Wang L  Xie Z  Lu J  Yan C  Yang P  Chen G 《Electrophoresis》2006,27(4):768-777
An isocratic elution pressurized CEC (pCEC) system was used to separate and determine ten carbamate insecticides. It was found that introduction of the electrical field, supplementary pressure, and SDS in the proposed method greatly improved the speed, column efficiency, selectivity, and repeatability for separation and determination of carbamates. On a capillary column of 75 microm ID packed with 3 microm octadecyl silica, baseline separation and detection of ten analytes was performed by using a mobile phase consisting of 30% v/v ACN and 70% v/v of 5 mmol/L ammonium acetate (pH 6.5) containing 1 mmol/L SDS and 0.01% triethylamine (TEA). Under the optimum conditions ten carbamate insecticides could be completely separated within 20 min. For the real vegetable samples, an SPE procedure for the cleanup of matrices was carried out prior to pCEC analysis. The detection limits of 0.05-1.6 mg/kg for ten carbamates and mean recoveries of 51.3-109.2% for eight kinds of vegetable samples at different concentrations of carbamates with RSD less than 11.4% were obtained, respectively. The proposed method has been proved to be effective in the rapid analysis of carbamate residues in vegetables.  相似文献   

9.
Domoic acid (DA) is a naturally-occurring amino acid that causes a form of human intoxication called amnesic shellfish poisoning (ASP) following the consumption of shellfish. A rapid and sensitive HPLC-UV method has been developed for analysis of DA and analogues in shellfish without the need for SPE clean-up. Isocratic chromatographic separation of DA and its isomers from shellfish matrix interferences and from the prevalent amino acid, tryptophan, was achieved by careful control of the mobile phase pH. The optimised pH was found to be 2.5 when using a Luna(2) C18 column. Sample extraction was verified with control extracts from shellfish spiked at 5.0 and 10.0 g/g of DA and with certified reference material. The average extraction efficiency was 98.5%. The calibration, based on mussel tissue spiked with DA standard, was linear in the range 0.05–5.0 g/ml (r=0.9999) and the detection limit (signal:noise 3:1) was better than 25 ng/ml. The DA assay achieved good precision; %RSD=1.63 (intra-day, n=6) and %RSD=3.7 (inter-day, n=8). This method was successfully applied to a variety of shellfish species, allowing the rapid screening of a large number of samples per day (20–30), without the need for SPE clean-up. Quantitative data were obtained for shellfish samples containing domoic acid in the concentration range 0.25–330 g/g. Using the same chromatographic conditions, LC-MS3 was used to determine DA and its isomers, isodomoic acid D and epi-domoic acid, in scallop tissues.  相似文献   

10.
Domoic acid (DA) is a neurotoxic amino acid that is responsible for the human toxic syndrome, amnesic shellfish poisoning (ASP). A new rapid, sensitive liquid chromatographic (LC) method has been developed for the determination of DA in various marine samples. DA in marine biological materials was derivatised with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) and analysed using isocratic reversed-phase LC with fluorimetric detection. The calibration, based on standard DA solutions, was linear in the range 0.04-2 microg/ml (r2=0.998) and the detection limit (3:1, signal/noise) was better than 1 ng/ml. Using the certified reference material (MUS-1B), recoveries of DA from shellfish tissue were >95% (n=5). When a strong anion exchange SPE cartridge was used for sample clean-up the detection limit was 6 ng DA/g mussel tissue. Good reproducibility was achieved with RSD values ranging from 3% for 8 microg DA/g (n=5), to 5% for 0.04 microg DA/g (n=5). This new method was successfully applied to the determination of DA in naturally contaminated shellfish and in marine phytoplankton cultures of Pseudonitzschia sp.  相似文献   

11.
During 1998 and early 1999, shellfish samples from sites in Scotland were found to contain the amnesic shellfish poisoning toxin, domoic acid (DA). Two different techniques, liquid chromatography (LC) with UV diode-array detection and LC with mass spectrometric (MS) detection, were used to detect and confirm DA in shellfish extracts. The LC/UV method was validated for routine monitoring by recovery experiments on spiked mussel and scallop tissues with a certified mussel tissue used as reference material. Crude extracts of selected samples as well as extracts cleaned with strong anion exchange (SAX) were analyzed by both LC/UV and LC/MS. Good correlation (linear regression r2 = 0.996, slope = 0.93) between the 2 methods was found for cleaned extracts. Analyses of crude extracts by LC/UV produced false-positive results in 2 crab samples, whereas LC/MS analyses gave accurate results. It was concluded that LC/UV is a valid approach for routine monitoring of DA in shellfish when cleanup is performed with a SAX cartridge to prevent false positives. A variety of shellfish species were surveyed for DA content, including Pecten maximus (king scallops), Chlamys opercularis (queen scallop), Mytilus edulis (blue mussels), Cancer pugaris (crab), and Ensis ensis (razor fish). The highest concentration of DA was 105 microg/g in Pecten maximus.  相似文献   

12.
A collaborative study was conducted on the Biosense amnesic shellfish poisoning (ASP) enzyme-linked immunosorbent assay (ELISA) for the determination of domoic acid (DA) toxins in shellfish in order to obtain interlaboratory validation data for the method. In addition, a method comparison study was performed to evaluate the ASP ELISA as an alternative to the current liquid chromatography (LC) reference method for DA determination. The study material comprised 16 shellfish samples, including blue mussels, Pacific oysters, and king scallops, spiked with contaminated mussel homogenates to contain 0.1-20 mg DA/kg shellfish flesh. The shellfish samples were extracted with 50% aqueous methanol, and the supernatants were directly analyzed. Sixteen participating laboratories in 10 countries reported data from the ASP ELISA, and 4 of these laboratories also reported data from instrumental LC analysis. The participating laboratories achieved interlaboratory precision estimates for the 8 Youden paired shellfish samples in the range of 10-20% for RSD(r) (mean 14.8 +/- 4%), and 13-29% for RSDR (mean 22.7 +/- 6%). The precision estimates for the ELISA data did not show a strong dependence on the DA concentration in the study samples, and the overall precision achieved was within the acceptable range of the Horwitz guideline with HorRat values ranging from 1.1 to 2.4 (mean HorRat 1.7 +/- 0.5). The analysis of shellfish samples spiked with certified reference material (CRM)-ASP-MUS-b gave recoveries in the range of 88-122%, with an average recovery of 104 +/- 10%. The estimate on method accuracy was supported by a correlation slope of 1.015 (R2 = 0.992) for the determined versus the expected DA values. Furthermore, the correlation of the ASP ELISA results with those for the instrumental LC analyses of the same sample extracts gave a correlation slope of 1.29 (R2 = 0.984). This indicates some overestimation of DA levels in shellfish by the ELISA, but it is also a result of apparent low recoveries for the LC methods. This interlaboratory study demonstrates that the ASP ELISA is suitable for the routine determination and monitoring of DA toxins in shellfish, and that it offers a rapid and cost-effective methodology with high sample throughput.  相似文献   

13.
A pressurized CEC (pCEC) method with postcolumn detection cell had been developed for quantifying the lignans from Fructus schisandrae extracts. The effects of different experimental conditions, such as the ACN content of the mobile phase, the concentration and pH of the buffer, the applied voltage, and the supplementary pressure were studied. Five lignans (schisandrin, gomisin A, schisantherin C, deoxyschizandrin, schisandrin B) were baseline separated using a mobile phase of ACN-phosphate buffer (pH 5.4; 5 mM) (40:60 v/v) under -4 kV applied voltage. The method showed the satisfactory retention time and peak area repeatability. The calibration curves were linear in the range 50.0-1000.0 microg/mL for schisandrin, 20.0-500.0 microg/mL for gomisin A, 10.0-200.0 microg/mL for schisantherin C, 20.0-500.0 microg/mL for deoxyschizandrin, and 20.0-500.0 microg/mL for schisandrin B. The correlation coefficients were between 0.9978 and 0.9989. With this pCEC system, fingerprints of F. schisandrae were preliminarily established to distinguish two members S. chinensis (Turcz.) Baill. and S. sphenanthera Rehd. Et Wils. of F. schisandrae by characteristic peaks, and evaluate the quality of various sources of raw materials by determining the contents of the five lignans.  相似文献   

14.
This paper describes a new method for sensitive, specific and direct determination of domoic acid (DA), the causative toxin of amnesic shellfish poisoning (ASP) syndrome, in shellfish. It is based on combination of hydrophilic interaction liquid chromatography with mass spectrometry (HILIC/MS). The high percentage of organic modifier in the mobile phase and the omission of ion-pairing reagents, both favoured in HILIC, result in enhanced detection limits with MS detection. The new method was set up either on an ionspray ion trap MS instrument operating in MS and MS/MS scanning acquisition modes, or on a turboionspray triple-quadrupole MS system operating in selected ion monitoring (SIM) and multiple reaction monitoring (MRM) acquisition modes. Positive and negative ion experiments were performed. MRM experiments are recommended for screening contaminated shellfish tissue and for quantitative analyses due to highest sensitivity and selectivity. The minimum detection levels for the toxin in tissue were found to be 63 and 190 ng/g in positive and negative MRM experiments, respectively, which are well below the regulatory limit for DA in tissue (20 microg/g). Application to shellfish samples collected in the Adriatic Sea (Italy) in the period 2000-2004 demonstrated for the first time in Italy the presence of DA as a new toxin that has entered the Adriatic Mytilus galloprovincialis toxin profile.  相似文献   

15.
One micrometre silica particles, derivatized with C18, were electrokinetically packed into a 75-microm-i.d. capillary. The resulting column was evaluated for the separation of trimethoprim (TMP) and its impurities using pressurized capillary electrochromatography (pCEC), starting from a capillary liquid chromatographic (CLC) separation. These samples require gradient elution when separated by high performance liquid chromatography (HPLC), but with the new columns isocratic elution suffices for their separation by CLC or pCEC. Only 70,000 theoretical plates/m for impurity C were achieved using CLC mode at relative low pressure (78 bar) although very small particles were utilized. When a voltage above 2 kV (50 V/cm) was applied, unknown peaks appeared, which was assumed due to an electrophoretic effect with the unknown peaks resolving as a result of the applied voltage. In order to minimize these unfavorable contributions, only a low voltage was applied, still leading to higher separation performances and shorter separation times than in CLC. The optimal analyzing conditions in pCEC included a pressure of 78 bar, an applied voltage of 1 kV, and a mobile phase consisting of 80 mM sodium perchlorate (pH 3.1)/methanol (60/40, v/v). These conditions were used to separate and quantify four major impurities in TMP within 22 min. The obtained calibration curves were linear (r>0.9980) in concentration ranges between 0.005 and 0.1 mg/mL for impurities A and C; 0.02 and 0.10 mg/mL for impurity F; and 0.01 and 0.10 mg/mL for impurity H. The detection limits (S/N=3) for impurities A, C, F, and H were 0.52, 0.84, 3.18, and 2.41 microg/mL, respectively. The calibration curves were successfully applied to analyze spiked bulk samples, with mean recoveries ranging from 92% to 110%. The developed method can therefore be considered simple, rapid, and repeatable.  相似文献   

16.
Liu S  Zhang X  Lin X  Wu X  Fu F  Xie Z 《Electrophoresis》2007,28(11):1696-1703
A new analytical method, pressurized CEC (pCEC) with amperometric detection (AD) using 1.5 microm RP nonporous silica packed columns has been developed for the rapid separation and determination of four Sudan dyes in hot chilli. The influence of several experimental parameters on the retention behavior has been investigated. The electrochemical oxidation of Sudans I-IV separated by pCEC can be reliably monitored with a carbon electrode at +0.95 V (vs. Ag/AgCl). Fast and efficient separation of the analytes was achieved within 7 min by pCEC under the optimum conditions with an ACN/water (95:5%) mobile phase containing formic acid (pH 4.3), 5% acetone and 0.002% triethylamine using a separation voltage of 12 kV. The detection limits for four Sudan dyes ranged from 8.0 x 10(-7) to 1.2 x 10(-6) mol/L. To evaluate the feasibility and reliability of this method, the proposed pCEC-AD method was further demonstrated with hot chilli samples spiked with Sudan dyes.  相似文献   

17.
Pressure‐assisted CEC (pCEC) can either be performed on a CE instrument by adding pressure at the column inlet, or by applying voltage on a capillary liquid chromatography system. This study investigates the pressure's added value in pCEC using an LC instrument as well as the influence of the polymerization‐mixture composition on monolithic columns in such experimental circumstances. Two factors of the polymerization mixture, which is used to prepare the monolithic capillary columns, were varied according to an experimental design approach: the pore‐forming solvent/total monomer ratio and the pore‐forming solvents composition. Initially, the effect of the resulting stationary phase on the elution behavior of mainly pharmaceutical compounds was studied. Four responses were used to evaluate the effects on the chromatography: retention time, retention factor, peak asymmetry and number of theoretical plates. After processing the results, the stationary phase composition with the best chromatographic behavior was determined and tested. The advantageous properties of this stationary phase compared with the design center‐point column were demonstrated. Secondly, the results of these pCEC experiments were compared with those generated in an identical experimental setup previously performed using CEC. Chromatographic conditions were chosen so that the center‐point column showed similar retention in CEC and pCEC. The expected advantage (faster analysis) and drawback (decreased efficiency) of pCEC in the analysis of pharmaceuticals was evaluated. Analysis time and efficiency were both found to depend greatly on the porosity of the column. The conclusion of this comparison is that pCEC did not have a significant added value to CEC. However, this was mainly due to the instrument's limitation of the pressure‐driven flow over the column. A clear benefit of the pCEC setup was apparatus‐related, i.e. the presence of a loop injection system on the pCEC instrument, which avoids the injection problems that were occasionally observed in CEC.  相似文献   

18.
A comparison of different separation methods (high-performance liquid chromatography (HPLC), capillary HPLC (CHPLC) and pressurized capillary electrochromatography (pCEC)) coupled on-line with mass spectrometry (MS) is undertaken using the separation of a crude extract of ergot fungus (secalis cornuti) as an example. New and simple setups for a two-dimensional CHPLC coupled on-line with electrospray ionization (ESI)-MS (2D-CHPLC-MS) as well as for capillary size-exclusion chromatography performed under pCEC conditions and coupled on-line with ESI-MS (CSEC-pCEC-MS) are shown. In addition, an improved method for column packing is presented.  相似文献   

19.
Lu M  Zhang L  Feng Q  Xia S  Chi Y  Tong P  Chen G 《Electrophoresis》2008,29(4):936-943
A pressure-assisted CEC (pCEC) with ESI-MS based on silica-based monolithic column was developed for rapid analysis of narcotics. Combining the extremely high permeability and separation efficiency of silica-based monolithic column with the high selectivity and sensitivity of pCEC-ESI-MS, the developed system exhibited its prominent advantages in separation and detection. A systematic investigation of the pCEC separation and ESI-MS detection parameters was performed. Experiment results showed that the optimized separation efficiency could be obtained at 8 bar assisted pressure with 25 kV separation voltage, using the solution containing 65% ACN v/v and 20 mmol/L ammonium acetate with pH 6.0 as running buffer. 3 microL/min of sheath liquid was considered as the optimized flow rate since it could provide the maximum signal intensity. Under the optimum conditions, the tested five narcotics could be completely separated within 10 min with the detection limit in the range of 2.0-80 nmol/L. The proposed method has been successfully used for detection of narcotics in real urine samples.  相似文献   

20.
Ye F  Xie Z  Wu X  Lin X 《Talanta》2006,69(1):97-102
A simple and rapid pressurized isocratic capillary electrochromatography (pCEC) method has been developed to separate six pyrethroid pesticides. The effects of pH of buffer, organic solvent content, buffer concentrations and applied voltage on the separation of six pyrethroids were investigated. Under the optimized conditions, the pCEC method developed allows baseline separation of a complex mixture of six pyrethroids in <20 min. The method is applied to the analysis of these pesticide residues in Chinese cabbage. The limits of quantification (LOQ) ranged from 0.5 to 0.8 μg/ml (corresponding to 0.05 and 0.08 mg/kg in the vegetable sample), with relative standard deviations (R.S.D.) <5.0%. Mean values of recoveries for six pyrethroids ranged from 89.6 to 96.3%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号