首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A direct ethanol fuel cell (DEFC) is developed with low catalyst loading at anode and cathode compared to that reported in the literature. Pt/Ru (40%:20% by wt.)/C and Pt-black were used as anode and cathode catalyst with loadings in the range of 0.5–1.2 mg/cm2. The temperatures of anode and cathode were varied from 34 °C to 110 °C, and the pressure was maintained at 1 bar. Although low catalyst loading was used, the cell performance is enhanced by 40–50% with the use of low concentration of sulfuric acid in ethanol and Ni-mesh as current collector at the anode. The power density 15 mW/cm2 at 32 mA/cm2 of current density is obtained from the single cell with 0.5 mg/cm2 loading of Pt–Ru/C at anode (90 °C) and Pt-black at cathode (110 °C). The performance of DEFC increases with the increase in ethanol and sulfuric acid concentrations, electrocatalyst loadings up to 1 mg cm−2 at anode and cathode. However, the performance of DEFC decreases with further increase in electrocatalyst loading.  相似文献   

2.
Nafion/sulfonated poly(phenylmethyl silsesquioxane) (sPPSQ) composite membranes are fabricated using homogeneous dispersive mixing and a solvent casting method for direct dimethyl ether fuel cell (DDMEFC) applications operated above 100 °C. The inorganic conducting filler, sPPSQ significantly affects the characteristics in the nanocomposite membranes by functionalization with an organic sulfonic acid to PPSQ. Moreover, sPPSQ content plays an important role in membrane properties such as microstructure, proton conductivity, fuel crossover, and single cell performance test. With increasing sPPSQ content in the nanocomposite membrane, the proton conductivity increased and fuel crossover decreased. However, in a higher temperature range above 110 °C, Nafion/sPPSQ 5 wt.% composite membrane has the highest proton conductivity. Also, the DME permeability for the composite membrane with higher sPPSQ content increased sharply. The excessive sPPSQ content caused a large aggregation of inorganic fillers, leading to the deterioration of membrane properties. In this study, the optimal sPPSQ content for maximizing the DDMEFC performance was 5 wt.%. Our nanocomposite membranes demonstrated proton conductivities as high as 1.57 × 10−1 S/cm at 120 °C, which is higher than that of Nafion. The cell performances were compared to Nafion/sPPSQ composite membrane with Nafion 115, and the composite membrane with sPPSQ yielded better cell performance than Nafion 115 at temperatures ranging from 100 to 120 °C and at pressures from 1 to 2 bar.  相似文献   

3.
A Ru-free anode was developed for the direct utilization of iso-octane in low temperature solid oxide fuel cells (SOFCs). The anode was consisted of a Ni framework and a nano-sized oxygen–ion conductor, samaria-doped ceria (SDC), which was coated onto the inner surface of the framework via an ion impregnation process. Compared with the cells based on conventional Ni–SDC anodes, single cells with the SDC-coated Ni anodes exhibited improved stability and enhanced electrochemical activity. Peak power density of 400 mW cm−2 was achieved at 600 °C, and power generation was relatively stable over 260 h when iso-octane–air mixture was directly used as the fuel. The performance is comparable with those obtained using ceria-Ru as an internal reforming catalyst.  相似文献   

4.
PtSn/CeO2–C electrocatalysts were prepared by an alcohol-reduction process using ethylene glycol as solvent and reduction agent and CeO2 and Vulcan Carbon XC72 as supports. The electrocatalysts were characterized by EDX and XRD. The electro-oxidation of ethanol was studied at room temperature by chronoamperometry. PtSn/CeO2–C electrocatalyst with 15 wt% of CeO2 showed a significant increase of performance for ethanol oxidation compared to PtSn/C catalyst. Preliminary tests at 100 °C on a single cell of a direct ethanol fuel cell (DEFC) also confirm the results obtained by chronoamperometry.  相似文献   

5.
Initialization is a critical processing step that has thus far limited the application of the single-chamber solid oxide fuel cell (SC-SOFC). In-situ initialization of a SC-SOFC with a nickel-based anode by methane–air mixtures was investigated. Porous Ru–CeO2 was used as a catalyst layer over a Ni-ScSZ cermet anode. Catalytic testing demonstrated Ru–CeO2 had high activity for methane oxidation. The Ru in the catalyst layer catalyzed the formation of syngas, which successfully reduced the nickel oxide to metallic nickel in the anode. Single cells with a La0.8Sr0.2MnO3 (LSM) cathode, initialized by this in-situ reduction method, delivered peak power densities of 205 and 327 mW cm−2 at 800 °C and 850 °C, respectively. Such performances were better than those of the cell without the Ru–CeO2 catalyst layer that was initialized by an ex-situ reduction method were.  相似文献   

6.
A comparative study is carried out on the effect of cosintering temperature of anode–electrolyte bilayer on the fabrication and cell performance of anode-supported solid oxide fuel cells from commercially available tape casting materials. It was found that the sintering conditions have profound effects on the anode characteristic and cell performance. For low cosintering temperature as low as 1,250 °C, the electrolyte is unable to sinter fully and forms a porous structure which leads to a reduced open-circuit potential and poor cell performance especially under low current output. For further increasing cosintering temperature to 1,350 °C, the cell performance was lower under low current operation. However, the cell performance turns out to be better than that of high-temperature cosintering under high current output. Although at temperature as high as 1,500 °C the cell performs better than that of low temperature cosintering, the trend turn out to be reverse for high current operating due to less anode surface area resulting from overagglomeration of anode layer. An optimal cosintering temperature of 1,350–1,450 °C is recommended for commercially available anode–electrolyte bilayer of anode-supported solid oxide fuel cells.  相似文献   

7.
This paper reports on the preparation and characterization of sulfonated poly(ether ether ketone) (sPEEK)-based mixed matrix membranes. The inorganic matrix consisted of silica: Aerosil®380, tetraethoxysilane (TEOS) or a combination of both to obtain an interconnected silica network. The behavior of these membranes in ethanol–water systems was studied for application in a direct ethanol fuel cell (DEFC). Uptake measurements showed that the converted TEOS content had a strong influence on the hydrophilicity of the membranes. Proton conductivity was strongly related to the water content in the membrane, but the proton diffusion coefficients of membranes with various Aerosil®380–TEOS combinations were similar. Dynamic measurements in liquid–liquid (L–L) and liquid–gas (L–G) systems were performed to study the ethanol transport through the membrane. No reduction in ethanol permeability was obtained in the L–L system, but a remarkable reduction was obtained in the L–G system when 2 M ethanol was applied. The reinforcing characteristic of the combined Aerosil®380–TEOS-system were best observed at 40 °C with 4 M ethanol. The fuel cell performance prediction based on the selectivity of proton diffusion coefficient to ethanol permeability coefficient showed for nearly all composite membranes an improvement with respect to the polymeric reference. The presence of an inorganic phase led to relatively constant proton diffusion coefficients and lower ethanol permeability coefficients in comparison with the polymeric reference.  相似文献   

8.
Remarkable power density was obtained for anode-supported solid oxide fuel cells (SOFCs) based on La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte films, fabricated following an original procedure that allowed avoiding undesired reactions between LSGM and electrode materials, especially Ni. Electrophoretic deposition (EPD) was used for the fabrication of 30 μm-thick electrolyte films. Anode supports were made of La0.4Ce0.6O2−x (LDC). The LSGM powder was deposited by EPD on an LDC green tape-cast membrane added with carbon powder, both as pore former and substrate conductivity booster. A subsequent co-firing step at 1490 °C produced dense electrolyte films on porous LDC skeletons. Then, a La0.8Sr0.2Fe0.8Co0.2O3−δ (LSFC) cathode was applied by slurry-coating and calcined at 1100 °C. Finally, the porous LDC layer was impregnated with molten Ni nitrate to obtain, after calcination at 900 °C, a composite NiO–LDC anode. Maximum power densities of 780, 450, 275, 175, and 100 mW/cm2 at 700, 650, 600, 550, and 500 °C, respectively, were obtained using H2 as fuel and air as oxidant, demonstrating the success of the processing strategy. As a comparison, electrolyte-supported SOFCs made of the same materials were tested, showing a maximum power density of 150 mW/cm2 at 700 °C, more than 5 times smaller than the anode-supported counterpart.  相似文献   

9.
Methanol permeation is one of the key problems for direct methanol fuel cell (DMFC) applications. It is necessary to change the structure of the cathode of membrane electrode assembly (MEA). Therefore, a novel MEA with double-layered catalyst cathode was prepared in this paper. The double-layered catalyst consists of PtRu black as inner catalyst layer and Pt black as outer catalyst layer. The inner catalyst layer is prepared for oxidation of the methanol permeated from anode. The results indicate that this double-layered catalyst reduced the effects of methanol crossover and assimilated mixed potential losses. The performance of MEA with double-layered catalyst cathode was 52.2 mW cm−2, which was a remarkable improvement compared with the performance of MEA with traditional cathode. The key factor responsible for the improved performance is the optimization of the electrode structure.  相似文献   

10.
Silver (Ag) at 0.1–2.0 wt% was incorporated into cathodes for solid oxide fuel cells as a catalyst for oxygen reduction. A novel processing route for Ag incorporation ensuring a very homogeneous Ag ion distribution is presented. From the results of X-ray powder diffraction it can be concluded that the La0.65Sr0.3MnO3– perovskite phase is already formed at 900 °C. The solubility of Ag in the crystal lattice in this type of perovskite was below 1 wt%. The electrochemical tests of these materials show that there is only a slight catalytic effect of Ag. Scanning electron microscopy reveals a low mechanical contact of the cathode grains to the electrolyte due to the low cathode sintering temperature that was chosen.  相似文献   

11.
A series of poly(arylene ether sulfone)s containing pendant sulfonic acid groups have been prepared by an aromatic substitution polymerization reaction using 4,4-difluorodiphenylsulfone, 6,7-dihydroxy-2-naphthalenesulfonate, and various hydroxyl terminated monomers in the presence of potassium carbonate. The synthesized sulfonated polymers have been characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, ion exchange capacity, thermogravimetric analysis, and proton conductivity measurements. With a molecular weight of 50,000–59,000 g/mol and an ion exchange capacity of 1.17 meq./g, these polymers are thermally stable up to 250 °C. They are found to exhibit better performance at 65 and 80 °C in direct methanol fuel cells than Nafion 115 membrane despite lower proton conductivity due to a significantly lower methanol crossover.  相似文献   

12.
直接甲醇燃料电池阳极催化剂PtRu/C的制备和表征   总被引:22,自引:2,他引:22  
用三种方法制备了PtRu/C[Pt和Ru质量分数分别为20%和10%,记为PtRu/C(20%-10%)]甲醇阳极催化剂,通过X射线衍射(XRD)和透射电镜(TEM)考察了PtRu/C催化剂的粒子大小和晶格参数的变化,利用单电池实验考察了催化剂在直接甲醇燃料电池中的催化活性.结果表明,改变溶剂的组成提高了贵金属在活性炭表面的分散度,并改善了PtRu间的相互作用,用乙二醇/水/异丙醇混合溶剂制备的PtRu催化剂金属颗粒较小,PtRu间的相互作用较强,以该催化剂作甲醇阳极的直接甲醇燃料电池的性能较好.  相似文献   

13.
Waste plastics of different types were catalytically coprocessed with petroleum residue of light Arabian crude oil in the presence of a number of catalysts. The purpose of the study was to explore effects of various conditions such as catalyst type, amount of catalyst, reaction time, pressure and temperature on the product distribution. The waste plastic studied included low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS) and polypropylene (PP). A series of single (waster plastic with catalyst) and binary (waste plastic and residue with catalyst) reactions were carried out in an autoclave reactor under variable reaction conditions. The reaction conditions used were 1, 3 and 5 wt.% catalysts, 30–120 min reaction time, 400–430 °C reaction temperature and 500–1200 psi hydrogen pressure. The product distribution achieved for residue/plastic/catalyst system showed higher yields of liquid fuels as compared to residue/plastic system. Hydrocarbon gases were formed as well along with heavy oils, insoluble gums and coke. At the reaction conditions of 3 wt.% NiMo catalyst, 90 min reaction time, 1200 psi hydrogen gas pressure, 430 °C temperature and residue to plastic feed ratio of 3:2 (wt.) afforded maximum conversion of the plastics into liquid fuel oils.  相似文献   

14.
研究了Ce改性的Pt/γ-AlO3对于富氢气氛下CO选择氧化反应的催化行为考察了制备条件(共沉积沉淀法、分步沉积沉淀法以及沉积沉淀温度)对催化活性的影响.结果表明,在80℃时用共沉积沉淀方法制备的催化剂Pt/γ-AlO3-CP-80对CO氧化反应表现出良好的活性和选择性,CO转化率在120℃时可以达到85%.利用氢气程序升温还原和原位漫反射红外光谱对不同条件下制备的催化剂进行了表征,分析了Cc的促进作用.  相似文献   

15.
二甲醚的电催化氧化反应   总被引:2,自引:0,他引:2  
王世忠 《催化学报》2003,24(9):695-700
 考察了负载于镓酸镧基电解质上的镍电极与镍-钐掺杂氧化铈复合电极电催化二甲醚氧化反应的特性.结果表明,反应的主要产物均为CO,H2和CH4,同时生成少量完全氧化的产物H2O和CO2.在开路电位下二甲醚发生裂解反应,生成的CO,H2和CH4三种主要产物的比例接近于1.在有电泵氧存在下,二甲醚的电催化氧化反应强烈地依赖于阳极及电解质材料的组成.Ni/La0.9Sr0.1Ga0.8Mg0.2O3界面上发生的主反应是二甲醚的部分氧化,且存在有严重的积碳现象.电极中掺入SDC(15%Sm3+-掺杂的CeO2)后,二甲醚完全氧化性能明显增强;随着电流的增大,氢的生成速率显著减小,并生成大量的H2O.采用掺钴镓酸镧基电解质后,Ni-SDC主要表现为催化二甲醚部分氧化反应,且显著抑制了积碳的发生.Ni-SDC/La0.8Sr0.2Ga0.8-Mg0.11Co0.09O3上二甲醚电催化氧化反应的主要产物为1∶1的CO和H2.掺钴电解质引起Ni-SDC具有特殊的催化性能,可能与电解质中p型电导的存在有关.  相似文献   

16.
In this work, the effect of Nafion ionomer content on the structure and catalytic performance of direct CO polymer electrolyte membrane fuel cell(CO-PEMFC) by using Rh-N-C single-atom catalyst as the anode catalyst layers was studied. The ionic plaque and roughness of the anode catalyst layers increase with the increase of Nafion ionomer content. Furthermore, the contact angle measurement results show that the hydrophilicity of the anode catalyst layers also increases with the increase of Nafion ionomer content. However, when the Nafion ionomer content is too low, the binding between microporous layers, catalyst layers and membrane cannot meet the requirement for either electric conductivity or mass transfer. While Nafion ionomer content increased above 30%, the content of water in anode is difficult to control. Therefore, it was found that AN 30(30% Nafion ionomer content of anode) is the best level to effectively extend the three-phase boundary and improve CO-PEMFCs performance.  相似文献   

17.
The influences of various salts and water-soluble polymers on the phase transition temperature of thermo-setting gels prepared by combining methylcellulose (MC)–sodium citrate (SC)–polyethylene glycol (PEG) at appropriate ratios (the MC–SC–PEG system) were investigated. Concerning cations, comparison of the phase transition temperature between SC and tripotassium citrate (PC) showed a rapid increase in the viscosity of SC between 20 °C and 25 °C and an increase in the viscosity of PC between 30 °C and 35 °C. Concerning the valency of anions, comparisons among SC, disodium tartrate dihydrate (ST), disodium maleate hemihydrates (SM), and sodium sulfate (SS) showed a rapid increase in the viscosity of trivalent SC between 20 °C and 25 °C and changes in the viscosity of the three bivalent sodium salts (ST, SM, and SS) at ≥30 °C. Thus the phase transition temperature decreased with an increase in the valency of anions.Subsequently, the influences of various water-soluble polymers on the gelling temperature were compared. Using polyvinylpyrrolidone (PVP) instead of PEG, the gelling temperature decreased with an increase in the PVP concentration even without the addition of SC. Unlike PVP, the addition of xanthan gum as a viscosity-increasing polysaccharide did not reduce the gelling temperature irrespective of its concentration.Temperature-associated changes in viscosity were observed at a fixed SC concentration with changes in the concentration of PVP or PEG. The gel phase transition temperature increased from 46 °C to 50 °C in gels not containing PVP or PEG. The viscosity did not differ between the addition of PVP or PEG at a low concentration and its absence. However, the viscosity clearly changed after the addition of each agent at a high concentration.  相似文献   

18.
于彦存  王显  葛君杰  刘长鹏  邢巍 《应用化学》2019,36(11):1317-1322
直接甲酸燃料电池(DFAFC)阳极活性炭载Pd催化剂活性组分易聚集,分散差且存在炭载体的电腐蚀作用,造成催化活性低稳定性差。 为解决上述问题,本文通过调控炭载Pd催化剂的载体改善催化活性和稳定性。 采用低温化学氧化法制备了聚吡咯(PPy)与活性炭复合材料,在聚合过程中加入活性炭,经过高温热解聚吡咯形成复合碳载体负载Pd催化剂,并表征了热解聚吡咯碳修饰催化剂表面形貌,发现聚吡咯修饰后的催化剂载体表面氮元素以吡咯氮的形式存在,催化剂活性组分Pd纳米粒子可稳定在2.25 nm。 通过甲酸电催化氧化性能测试,结果表明,Pd单位质量比活性比Pd/C催化剂提高了2.5倍。  相似文献   

19.
Dimethyl ether (DME) has been considered as a promising alternative fuel for direct‐feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon‐supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the C? O and C? H bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer‐electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two‐fold enhancement at 0.5 V in fuel cells) than the state‐of‐the‐art binary Pt50Ru50/C catalyst (HiSPEC 12100).  相似文献   

20.
Developments of intermediate-temperature solid oxide fuel cells (IT SOFCs) require novel anode materials with a high electrochemical activity at 800–1070 K. The polarization of cermet anodes, made of nickel, ceria and yttria-stabilized zirconia (YSZ) and applied onto a YSZ solid electrolyte, can be significantly reduced by catalytically active ceria additions, the relative role of which increases with decreasing temperature. Further improvement is observed when using Ce0.8Gd0.2O2– (CGO) having a high oxygen ionic conductivity instead of undoped ceria, owing to enlargement of the electrochemical reaction zone. Nanocrystalline CGO powders with grain sizes of 8–35 nm were thus synthesized via the cellulose-precursor technique and introduced into Ni–CGO–YSZ cermets, and tested in contact with a (La0.9Sr0.1)0.98Ga0.8Mg0.2O3– (LSGM) electrolyte at 873–1073 K. The results showed that the anode performance can be enhanced by additional surface activation, in particular by impregnation with a Ce-containing solution, and also by incorporation of YSZ, which probably acts as a cermet-stabilizing component. The overpotential of the surface-modified Ni–CGO (25 wt%–75 wt%) anode in a 10% H2/90% N2 atmosphere was approximately 110 mV at 1073 K with a current density of 200 mA/cm2.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号