首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文用原子簇模型(CM)的从头计算方法, 计算了银表面甲醇氧化反应中的静态吸附物种的优化几何构型及吸附性质。计算表明在清洁银表面甲醇、甲醛只存在物理吸附; 当表面存在吸附氧原子时, 甲醇可在银表面形成两种分子态吸附;甲醛与表面羟基OH(a)或氢原子H(a)共存时在银表面能够形成化学吸附, 且CH2O(a)极易与O(a)反应生成深度氧化中间体η^2-甲二氧基; 中间产物甲氧基在无氧的银表面能够形成稳定吸附, 在富氧银表面极易进一步氧化脱氢生成产物甲醛。通过计算与实验结果的对照, 我们对反应机理作了初步讨论。  相似文献   

2.
本文用原子簇模型(CM)的从头计算方法, 计算了银表面甲醇氧化反应中的静态吸附物种的优化几何构型及吸附性质。计算表明在清洁银表面甲醇、甲醛只存在物理吸附; 当表面存在吸附氧原子时, 甲醇可在银表面形成两种分子态吸附;甲醛与表面羟基OH(a)或氢原子H(a)共存时在银表面能够形成化学吸附, 且CH2O(a)极易与O(a)反应生成深度氧化中间体η^2-甲二氧基; 中间产物甲氧基在无氧的银表面能够形成稳定吸附, 在富氧银表面极易进一步氧化脱氢生成产物甲醛。通过计算与实验结果的对照, 我们对反应机理作了初步讨论。  相似文献   

3.
本文运用超高真空程序升温反应谱(TPRS),结合瞬变应答和同位素交换方法研究了电解银上氧致甲醇吸附和反应的机理以及水对甲醇氧化的影响.实验结果表明:吸附态的氧能显著增加甲醇的吸附并和甲醇反应生成水;水中的氧来源于吸附态氧,氢来源于甲醇中的甲基氢和羟基氢且以甲基氢居多.水和氧在电解银表面上存在着竞争吸附,水的加入能抑制甲醇氧化为甲醛的副产物CO_2的产生,提高反应选择性.此结果与活性数据一致.  相似文献   

4.
包信和  邓景发 《催化学报》1986,7(3):256-263
# 用程序升温反应谱(TPRS)研究了甲醇在电解银工业催化剂表面上的氧化反应。结果表明:除少量H_2O和微量CO_3外,纯净的银表面不吸附CH_3OH,D_2等气体,当银表面预吸附氧后,显著增强了上述气体的吸附和反应。在程序升温过程中,甲醇与预吸附的氧发生表面反应,分别在温度400,500和630K时给出三组分开的产物群。由产物的峰形、峰温和动力学参数得出:第一、第三组产物群的控速步骤是两个不同的表面反应;第二组产物群的控速步骤为反应产物的表面脱附。  相似文献   

5.
用密度泛函理论(DFT)的B3-LYP方法和原子簇模型研究了碘和修饰银(110)表面对甲醇吸附的影响。结果表明,甲醇分子在干净的银表面吸附很弱甚至不吸附,但在氧或碘修饰过的银表面上,由于预吸附导致吸附能的增加而变得容易吸附。并进一步采用目前较新的映像电荷模型计算验证了在甲醇部分氧化制甲醛反应中氧或碘对银催化剂表面修饰的本质是电荷修饰这一推论,为实验中如何筛选修饰提供了良好的判据。  相似文献   

6.
用密度泛函理论(DFT)的B3-LYP方法和原子簇模型研究了碘和修饰银(110)表面对甲醇吸附的影响。结果表明,甲醇分子在干净的银表面吸附很弱甚至不吸附,但在氧或碘修饰过的银表面上,由于预吸附导致吸附能的增加而变得容易吸附。并进一步采用目前较新的映像电荷模型计算验证了在甲醇部分氧化制甲醛反应中氧或碘对银催化剂表面修饰的本质是电荷修饰这一推论,为实验中如何筛选修饰提供了良好的判据。  相似文献   

7.
CO在CeO2(111)表面的吸附与氧化   总被引:2,自引:0,他引:2  
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应.  相似文献   

8.
王怀明  邓景发 《化学学报》1993,51(10):950-954
本文运用UPS、超高真空程序升温反应谱(TPRS)研究了氧和甲醇在银钯合金上的吸附和反应。实验结果表明, 合金表面存在两种分别与Ag和Pd原子有关的活性位; 少量钯原子的存在, 一方面提供了甲醇分解反应的活性中心, 另一方面通过与银之间的电子相互作用, 削弱了氧与银的结合, 增强了表面吸附氧的反应活性, 从而改变了甲醇氧化反应的选择性。  相似文献   

9.
氧在银表面吸附的EHMO研究   总被引:3,自引:0,他引:3  
本文应用EHMO法计算了氧原子、氧分子和若干代表Ag(111)表面上不同位置的银原子簇间的位能曲线或位能面。结果表明:在150~250℃间,Ag(111)表面化学吸附氧时,最可能的吸附位置是叠位,被吸附物的价态为O~-。这种单原子氧是氧分子在叠位发生解离吸附所形成。在Ag(111)表面上,不形成双原子氧吸附,它可能只发生在单个Ag原子(或某些高度分散的载体银或特殊的晶体银,其特性类似单个Ag原子)上,被吸附时的价态为O_2~-。  相似文献   

10.
运用HREELS技术对甲醇在预吸附氯的Ag(111)表面上的吸附氧化行为进行了较细致的研究.结果证明Cl对甲醇氧化的影响缘于它在Ag(111)上的吸附所引起的表面结构的改变进而改变表面氧吸附物种,从而使得甲醇氧化的中间产物发生变化.实验结果说明甲醇在Ag(111)和低暴露量氯吸附的Ag(111)表面上的氧化行为是相似的,检测到了中间产物Ⅰ和Ⅲ;在高暴露量氯吸附的Ag(111)上甲醇氧化时则产生中间产物Ⅰ、Ⅳ和甲醛物种.对上述不同的甲醇氧化行为作了分析,并指出了以前人们在考察甲醇氧化机理时只考虑原子氧作用的片面性.  相似文献   

11.
甲醛在CeO2(111)表面吸附的密度泛函理论研究   总被引:4,自引:1,他引:3  
采用基于第一性原理的密度泛函理论和周期平板模型, 研究了甲醛在以桥氧为端面的CeO2(111)稳定表面上的吸附行为. 通过对不同覆盖度, 不同吸附位的甲醛吸附构型、吸附能及电子态密度的分析发现, 甲醛在CeO2(111)表面存在化学吸附与物理吸附两种情况. 化学吸附结构中甲醛的碳、氧原子分别与表面的氧、铈原子发生相互作用, 形成CH2O2物种; 吸附能随着覆盖度的增加而减小. 与自由甲醛分子相比, 物理吸附的甲醛构型变化不大, 其吸附能较小. 利用CNEB(climbing nudged elastic band)方法计算了甲醛在CeO2(111)表面的初步解离反应活化能(约1.71 eV), 远高于甲醛脱附能垒, 这与甲醛在清洁CeO2(111)表面程序升温脱附实验中产物主要为甲醛的结果相一致.  相似文献   

12.
 首次采用原位共焦显微激光拉曼光谱研究了经纯氧预处理后电解银表面吸附的不同氧物种在升温过程中相互转化的情况. 结果发现,当温度低于423 K时, Ag-O2物种缓慢转化为超氧物种 Ag[O-O]-; 温度升高至423 K时, Ag[O-O]-物种将随着时间的延长转化为 Ag-O(α) 物种; 继续升高温度, Ag-O(α) 物种首先转化为 Ag-O-O-Ag 物种,再进一步转化为电解银表面最稳定的 Ag-O(γ) 次表层氧物种并保持至973 K以上. 结合实际反应体系,低温下电解银表面吸附的氧物种主要是分子氧,在类似乙烯环氧化反应的条件下这些分子氧将转化成 Ag-O(α) 物种,而在类似甲醇选择氧化制甲醛的反应条件下又转化为在高温下较稳定的 Ag-O(γ) 物种,根据具体的转化细节推测了可能的机理.  相似文献   

13.
董坚  薛奇  孙岳明  刘举正 《化学学报》1993,51(7):625-631
本文用EHMO紧束缚方法计算了咪唑在银(1,1,1)面上吸附的四种构型和吸附态的电子结构,得到咪唑在银表面上的优化构型为直立桥位吸附.按该方式,咪唑环上吡啶型氮原子的P轨道和邻近Ag原子s轨道之间形成多中心σ键.咪唑环上各原子的电荷布居在吸附后有较大的变化,表现出电子由银表面向咪唑转移,并进而使得环上N-H键解离能从吸附前的519.4kJ·mol^-1降低到吸附后的70.34kJ·mol^-1.这与实验中观察到的咪唑N-H键在Ag表面极易断裂的事实相符.  相似文献   

14.
氧在银表面上的吸附态的理论研究   总被引:1,自引:0,他引:1  
本文根据银表面的特点,用CNDO法研究了氧在银表面上可能形成的各种吸附态.结果表明,氧分子以卧式吸附在核间距较大的表面桥位上时,能形成较强的吸附键.此时氧分子的离解趋势较大.分析和计算了氧分子和氧原子在Ag(110)和Ag(111)晶面上的有利吸附位置和取向.比较了两种晶面吸附性能的差别.计算结果与实验的推论相一致.  相似文献   

15.
通过原位红外漫反射实验比较研究了甲醇在Cu及ZrO2/Cu催化剂表面的吸附与反应,并且采用不同还原温度来处理催化剂,改变催化剂表面的氧含量,并进一步研究甲醇吸附和反应性能随着催化剂表面氧含量的变化规律.结果表明,甲醇在Cu催化剂表面反应生成吸附态甲醛物种,进一步生成CO2,而在ZrO2/Cu表面形成甲酸盐物种,并与表面氧进一步反应生成CO2.随着催化剂还原温度的升高,反应中间物进一步生成CO2的反应速率变慢,说明催化剂表面的氧物种含量决定着催化剂甲醇吸附中间物种的形成及反应速率.  相似文献   

16.
使用漫反射傅里叶变换红外光谱(DRIFTS)原位反应器研究了273~333 K下甲醛与α-Al2O3颗粒物表面的非均相反应. 结果表明, 甲醛在α-Al2O3颗粒物表面生成产物主要为甲酸盐、二氧亚甲基以及少量多聚甲醛和吸附态甲醛, 甲酸盐是由中间产物二氧亚甲基进一步氧化生成的. 在293 K下, 甲醛在α-Al2O3颗粒物表面的反应级数为0.81±0.05, 以样品池几何面积计算的初始摄取系数γ0GEO为(2.3±0.5)×10-5, 以颗粒物BET面积计算的初始摄取系数γ0BET为(9.4±1.7)×10-9, 表观活化能为33.5 kJ/mol.  相似文献   

17.
氧化铈,氧化铜表面氧种的TPR研究   总被引:1,自引:0,他引:1  
卢冠忠  汪仁 《化学通报》1993,(10):35-37
在氧化物催化的氧化还原反应中,催化刘表面上的氧物种对整个催化反应起着关键的作用,不同的表面氧物种将对氧化还原反应的产物产生影响。目前人们普遍认为的表面氧物种有:O_2、O_2~-、O~-和O_3~-(在低温时存在),它们的关系是:O_2(吸附)→O_2~-(吸附)→O~-(吸附)→  相似文献   

18.
在分子尺度上介绍了Au/TiO_2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H_2O的作用.在低温(320 K),H_2O起着促进CO氧化的作用,CO氧化的活性位位于金纳米颗粒与TiO_2载体界面(Au~(δ+)O~(δ–)––Ti)的周边.O_2和H_2O在金纳米颗粒与Ti O_2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO_2.300K时CO_2的形成速率受限于O_2压力与该反应机理相印证.相反,在高温(320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O_2,随后O_2解离,并在金属金表面氧化CO.  相似文献   

19.
陆靖  卢翠萍 《分子催化》1993,7(5):355-364
本文用EHMO方法计算了氧原子在晶体银及其合金Ag-X(X=Cu,Mg,Cd,Ga,Ge,In,Sn,Se,Te,Al,Bi,Sb)表面上的吸附态;试图通过计算找出这些金属的电子性质与其对甲醇氧化制甲醛反应中催化活性的关系.计算结果表明:银及其合金的的催化活性与体系的电子最高占有轨道HOMO和最低空轨道LUMO的能量差有关,如果HOMO和LUMO的能量差比纯银体系的能量差小,该合金对反应有较好的催化活性,同时吸附在该合金表面上的氧原子有较大的电荷密度分布.  相似文献   

20.
陆靖  谢璎  江逢霖 《化学学报》1995,53(7):653-660
本文改进了混合式格点法对第一时间步的计算方法, 在保持原有精度的基础上, 减少计算时间约三个数量级。用这一方法, 研究了氧在银及其合金表面的吸附动力学。计算表明: 氧分子在银表面有效吸附的反应阈值是6.29kJ/mol, 这和实验所得的活化能相同。当氧分子动量大于45a.u.或合金中金配比大于0.30时,氧分子均无法在银及其合金表面形成稳定吸附, 这此结果和实验一致。计算中没有发现分子氧直接解离成原子氧的现象。从计算结果中推测, 处在振动激发态的氧分子比处在振动基态的氧分子更容易吸附在银表面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号