首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
气凝胶在绝热保温、催化、吸附分离等领域有着广泛的应用,通常需要对气凝胶的微观结构和力学性能进行调控以满足特定需求.然而,开发绿色技术制备高强韧天然高分子气凝胶仍然面临巨大的挑战.本文报道了在壳聚糖新溶剂中基于Hofmeister效应调控壳聚糖分子链的侧向聚集和重结晶,影响壳聚糖水凝胶和气凝胶的微观形貌、孔隙结构和力学性能等物理性质,构建出高强韧壳聚糖气凝胶.通过改变盐的种类,可以有效调控壳聚糖水凝胶和气凝胶的力学性能,并显示出遵循Hofmeister序列的规律.壳聚糖气凝胶的拉伸强度、杨氏模量和断裂功最高可达(23.1±0.4) MPa、(198.0±43.8) MPa和(9.6±0.9) MJ/m3,比表面积最高可达410 m2/g.这种简单策略有助于制备高强韧壳聚糖气凝胶,在柔性电子器件、组织工程材料、药物/蛋白载体和催化等领域有潜在应用前景.  相似文献   

2.
李立清  吴盼旺  马杰 《化学进展》2021,33(6):1010-1025
近年来,随着工业的迅速发展,水污染危机是世界面临的主要威胁之一,开发新型环境功能材料和技术,实现水体污染物的高效去除是目前研究热点。双网络水凝胶(Double Network hydrogels)是具有三维网络结构的高分子聚合物,其机械性能优越,具备较高的强度,可以承受高水平的拉伸和压缩变形。低溶胀率使水凝胶可以容纳大量水并保持稳定的形态和网络结构。此外,由于其独特的交联方式,它还具有快速的自修复性能和显著的抗疲劳性能。具备众多优点的双网络水凝胶是一种有着巨大潜力的吸附材料,在水处理领域引起广泛关注。本文综述了双网络凝胶吸附剂的物化特性及其分类,以及近年来双网络凝胶吸附剂去除水体中重金属、抗生素和染料等污染物的应用进展。通过该综述,为双网络凝胶吸附剂的深入开发以及在水质净化中的工程应用提供新思路、新方法和新技术。  相似文献   

3.
水凝胶是以大量水为分散介质的三维高分子网络.高分子网络和水分子之间的氢键将水束缚在网络内部,从而使体系丧失流动性并转变成一种准固态物质.水凝胶能够在多种外界刺激下改变形状和体积,因此在软体机器人、柔性电子器件和传感器等领域具有广泛的应用前景,也引起了科研人员的关注.在生物软组织中,多尺度结构(如表面微/纳米结构,有序三维网状结构)的存在对于生物材料的自清洁、耐冻、环境适应性和优异的机械性能等功能至关重要.受生物水凝胶结构与功能特性的启发,研究人员开发了一系列对各种机械和环境条件具有高度适应性的仿生多尺度水凝胶.本文将从水凝胶的二维界面和三维网络的设计2个方面总结和讨论近年来仿生多尺度水凝胶的研究成果.二维界面设计包括表面化学/物理修饰、表面微/纳米结构构筑,能够调节水凝胶的表面浸润性和黏附性,拓展水凝胶在生物医学、海洋防污等领域的应用;三维网络设计,如引入非共价交联作用、设计有序网络结构、复合异质网络等,能够赋予水凝胶自修复性能、各向异性、高强度、形状记忆性能及抗冻性等优异的特性,拓展了水凝胶在可穿戴设备、软体机器人等领域以及复杂环境中的应用.最后我们对仿生水凝胶网络的设计、异质网络的分散以及无损表征等方面未来的发展以及该领域所存在的挑战作出展望.  相似文献   

4.
在聚电解质网络中引入氢键作用或共价键作用,分别形成物理-物理交联双网络和物理-化学交联双网络水凝胶纤维,纤维表面经水分蒸发形成类蜘蛛丝样的核-壳纤维结构。这种聚电解质基的水凝胶纤维展现了114.5MPa的高断裂强度、41.73MJ/m~3的高韧性、90%的高阻尼以及湿度响应的超收缩行为。  相似文献   

5.
羧甲基壳聚糖含有丰富的羧基和氨基, 通过1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)共催化交联羧甲基壳聚糖形成新型水凝胶. 调节EDC/NHS用量, 制备不同交联度的羧甲基壳聚糖水凝胶(CMCS hydrogels). 研究水凝胶的流变行为, 结果表明, 高交联度的水凝胶具有较好的弹性形变能力, 较高的储存模量, 这是因为随着交联度的升高, 羧甲基壳聚糖水凝胶化学交联网络结构趋于完善. 以胸腺五肽(TP-5)为模型药物, 初步评价CMCS水凝胶药物释放行为, 结果表明水凝胶交联度越高, 胸腺五肽释放速度越慢. MTT法初步评价了水凝胶细胞毒性, 细胞形态和细胞相对增值速率, 结果表明水凝胶毒性很低. 由此可见, 水凝胶具有良好的生物相容性, 在药物缓释和组织工程领域具有广阔的应用前景.  相似文献   

6.
多肽由于具有良好的生物相容性和生物可降解性、生物活性以及自组装特性, 近年来受到了广泛的关注。将多肽自组装特性引入到聚合物中,可赋予聚合物形成凝胶性并对凝胶网络分子结构做出一定控制,进而使凝胶具有如环境响应、力学可调等结构控制性能;将特殊功能性多肽引入到化学交联的聚合物凝胶网络中,可赋予水凝胶生物功能性,如细胞黏附、酶降解、抗菌等;将多肽的凝胶网络构建、结构控制作用以及功能性同时引入获得的物理/化学双重交联凝胶不仅赋予水凝胶一定的功能性,且多肽自组装贡献的物理交联结构还能对化学交联凝胶网络起增强作用。本文综述了基于多肽自组装的物理交联聚合物水凝胶、多肽功能化的化学交联聚合物水凝胶以及基于多肽的物理/化学双重交联的聚合物水凝胶,并展望了这些水凝胶的发展前景。  相似文献   

7.
报道了一种力学性能优良,湿态生物组织黏附能高的黏附水凝胶.该凝胶由丙烯酸、甲基丙烯酸羟乙酯和3-三烯十五烷基-1,2-邻苯二酚共聚,与壳聚糖复合、并由甲壳素纳米晶须增强而成.该凝胶网络含有可逆和不可逆交联作用.其中可逆物理作用包括阴阳离子聚电解质静电吸引、烷基链疏水缔合、苯环π-π堆积、阳离子-π、氢键和拓扑纠缠.由这些物理键形成的次级网络的可逆形成/破坏为水凝胶形变提供了能量耗散,从而提升了其断裂韧性.另一方面,水凝胶的快速吸水能力破坏了湿润基体表面的水合层,使凝胶表面基团能与组织表面形成物理键和化学键的界面相互作用,从而共同促进水凝胶与湿态组织的强韧黏附.水凝胶的断裂强度可达276.4 kPa,对湿润猪皮的界面黏附韧性可达831 J/m2,在水下对猪皮的界面黏附韧性约达236 J/m2,猪皮和猪肝伤口闭合强度分别可达26.2和16.5 kPa.该黏附凝胶适合作为免缝合的伤口闭合黏胶材料.  相似文献   

8.
综述了可拉伸超韧水凝胶的设计原理及其在组织工程和柔性电子器件领域的应用. 通过将网络结构层次、 化学结构、 增韧机制与宏观力学性能相结合, 重点讨论了单网络水凝胶、 双网络水凝胶、 纳米复合水凝胶及其它水凝胶等可拉伸超韧水凝胶的研究进展, 并总结和展望了新思路和新方向.  相似文献   

9.
可注射的水凝胶由于其独特的性质在生物医学领域中备受关注。壳聚糖是自然界中唯一的一种阳离子多糖,具有含量丰富、价格低廉、生物相容性和生物可降解性良好等优点,经常被用来制备可注射的水凝胶。近年来,随着研究的进一步深入,通过采用各种化学或物理改性和修饰方法、引入各种生物功能分子或采用各种交联方法,具有优异性能的可注射的壳聚糖水凝胶不断涌现,其应用范围不断扩展,在实际应用中发挥了越来越重要的作用。本文主要介绍了常见的化学交联的和物理交联的可注射的壳聚糖水凝胶的制备方法,综述了其在药物载体、基因载体、细胞支架和伤口修复等生物医学领域中的应用进展,对其存在的问题及发展趋势进行了分析和展望,为可注射的壳聚糖水凝胶的进一步发展提供指导和借鉴。  相似文献   

10.
冯茜  张琨雨  李睿  边黎明 《高分子学报》2021,(1):1-15,I0002
近年来,由工程生物材料制成的可注射治疗剂正变得越来越流行,并推动传统的临床实践走向微创化.可注射水凝胶由于其可调控的物理及化学特性、可控的降解性能、高含水量以及在微创方式下实现递送的能力,在组织工程和药物递送领域中变得越来越重要.研究者们已开发出例如原位交联水凝胶、大孔水凝胶、水凝胶微粒、动态交联水凝胶等一系列性能独特的可注射水凝胶.通过调控水凝胶的固含量和交联密度,并引入适当的共价或非共价相互作用,例如静电相互作用、疏水相互作用等,这些水凝胶可在注射过程中实现生物活性分子的递送.同时,可注射水凝胶亦可用于细胞的递送,提供细胞培养所需的三维环境,并通过调控力学性能、化学修饰、生物功能化修饰等手段调控细胞黏附、增殖、分化等行为.本文旨在回顾近年来可注射水凝胶的设计和制备的相关进展,以及其在再生医学中的应用,并对该领域存在的挑战和潜力进行了展望.  相似文献   

11.
Double network hydrogels (DN gels), consisting of two networks with strongly asymmetric network structures and properties, are one of most investigated high strength hydrogels. In most cases, the first network of DN gels is rigid, brittle and tightly crosslinked, while the second network is soft, ductile and loosely crosslinked. Because of the tunable and diverse network structures, DN gels with controlled shape deformation have attracted great attention in recent years. The shape deformation of DN gels can be controlled by first network, second network, or both networks. In this mini review, the shape deformation of DN gels via different networks will be summarized, and the application and future perspectives also are discussed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1351–1362  相似文献   

12.
A continuum damage model was developed to describe the finite tensile deformation of tough double-network (DN) hydrogels synthesized by polymerization of a water-soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading-unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto-plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.  相似文献   

13.
SUPER TOUGH GELS WITH A DOUBLE NETWORK STRUCTURE   总被引:1,自引:0,他引:1  
Living tissues work with fantastic functions in soft and wet gel-like state.Thus,hydrogels have attracted much attention as excellent soft and wet materials,suitable tot making artificial organs for medical treatments.However, conventional hydrogels are mechanically too weak for practical uses.We have created double network (DN) hydrogels with extremely high mechanical strength in order to overcome this problem.DN gels are interpenetrating network (IPN) hydrogels consisting of rigid polyelectrolyte and s...  相似文献   

14.
 Living tissues work with fantastic functions in soft and wet gel-like state. Thus, hydrogels have attracted much attention as excellent soft & wet materials, suitable for making artificial organs for medical treatments.However, conventional hydrogels are mechanically too weak for practical uses. We have created double network (DN) hydrogels with extremely high mechanical strength in order to overcome this problem. DN gels are interpenetrating network (IPN) hydrogels consisting of rigid polyelectrolyte and soft neutral polymer. Their excellent mechanical properties cannot be explained by the standard fracture theories. In this paper, we discuss about the toughening mechanism of DN gels in accordance with their characteristic behavior, such as large hysteresis and necking phenomenon. We also describe the results on tissue engineering application of DN gels.  相似文献   

15.
PVA改性PAMPS-PAM超高力学性能双网络水凝胶的制备   总被引:2,自引:0,他引:2  
田帅  单国荣  王露一 《高分子学报》2010,(10):1175-1179
采用紫外光引发聚合制备了聚乙烯醇(PVA)改性的聚(2-丙烯酰胺基-2-甲基丙磺酸)-聚丙烯酰胺(PAMPS-PAM)双网络(DN)水凝胶.测定并比较了PVA改性前后PAMPS-PAM双网络水凝胶的溶胀动力学;通过扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PVA改性前后PAMPS-PAM双网络水凝胶的压缩及拉伸性能.结果表明,经PVA改性后的PAMPS-PAM双网络水凝胶有较高的溶胀比;0.82%PVA用量的PAMPS-PAM双网络水凝胶在90%压缩形变率下仍保持完整、最大拉伸应力达到0.5 MPa,大幅提高PAMPS-PAM双网络水凝胶的力学性能.  相似文献   

16.
Polysaccharides possessing distinctive properties, such as biocompatibility, biodegradability, and nontoxicity, are promising matrices for hydrogels. However, the polysaccharides-based hydrogels have poor mechanical properties, which is a major limitation for their applications. In recent years, researches on double-network (DN) hydrogels with outstanding mechanical properties have gained increasing attention. Therefore, the main research orientation is to combine the benefits of both materials and broaden their applications in various fields. This paper reviews the recent progress of polysaccharide-based DN (PDN) hydrogels that show great advantages in mechanical, physiochemical properties, biocompatibility, biodegradability and so on. The preparation, structure, and unique properties of different PDN hydrogels are discussed in detail. Moreover, we summarize the applications of PDN hydrogels in biomedical and energy storage and conversion fields. This research progress is breaking through the limitations of PDN hydrogels and opening a new avenue for their future development.  相似文献   

17.
Zwitterionic hydrogels are very promising for biomedical applications. They are usually copolymerized with other polymers to improve their mechanical properties often at the expense of their biological properties. In this study, physically cross-linked poly(sulfobetaine methacrylate) (polySBMA) hydrogels were prepared, and their physical properties including phase behavior were investigated. Linear polySBMAs, with an average molecular weight ranging from 20.9 kDa to 316 kDa, were prepared via free radical polymerization at different KCl concentrations. The opaque-transparent phase transition of polySBMA-water mixtures were measured using a UV-vis spectrometer. Analysis from dynamic rheometry showed the formation of physically cross-linked hydrogels with mechanical ductility due to reversible charge interactions. Chemically cross-linked hydrogels were also prepared, and their swelling and mechanical properties were evaluated. It was found that the introduction of cross-linkers could lead to a decrease in the amount of physical cross-links in chemical hydrogels. In order to improve the mechanical properties of SBMA hydrogels, linear polySBMA was introduced to the network of chemically cross-linked polySBMA gels, creating a chemical-physical double network (DN) with both chemical and physical cross-links. The chemical-physical DN provides a desirable method to improve the mechanical properties of zwitterionic hydrogels without introducing other hydrophobic moieties.  相似文献   

18.
Interconnectivity of components in three‐dimensional networks (3DNs) is essential for stress transfer in hydrogels, aerogels, and composites. Entanglement of nanoscale components in the network relies on weak short‐range intermolecular interactions. The intrinsic stiffness and rod‐like geometry of nanoscale components limit the cohesive energy of the physical crosslinks in 3DN materials. Nature realizes networked gels differently using components with extensive branching. Branched aramid nanofibers (BANFs) mimicking polymeric components of biological gels were synthesized to produce 3DNs with high efficiency stress transfer. Individual BANFs are flexible, with the number of branches controlled by base strength in the hydrolysis process. The extensive connectivity of the BANFs allows them to form hydro‐ and aerogel monoliths with an order of magnitude less solid content than rod‐like nanocomponents. Branching of nanofibers also leads to improved mechanics of gels and nanocomposites.  相似文献   

19.
Interconnectivity of components in three‐dimensional networks (3DNs) is essential for stress transfer in hydrogels, aerogels, and composites. Entanglement of nanoscale components in the network relies on weak short‐range intermolecular interactions. The intrinsic stiffness and rod‐like geometry of nanoscale components limit the cohesive energy of the physical crosslinks in 3DN materials. Nature realizes networked gels differently using components with extensive branching. Branched aramid nanofibers (BANFs) mimicking polymeric components of biological gels were synthesized to produce 3DNs with high efficiency stress transfer. Individual BANFs are flexible, with the number of branches controlled by base strength in the hydrolysis process. The extensive connectivity of the BANFs allows them to form hydro‐ and aerogel monoliths with an order of magnitude less solid content than rod‐like nanocomponents. Branching of nanofibers also leads to improved mechanics of gels and nanocomposites.  相似文献   

20.
针对结冷胶脆性较大的问题,将聚乙二醇丙烯酸酯(PEGDA)引入结冷胶,通过紫外交联制备了结冷胶/PEGDA双网络凝胶,并对单组分凝胶和双网络凝胶的溶胀性能、微观形貌、拉伸力学性能、动态压缩性能和流变性能等进行比较.结果表明,双网络凝胶在类生理环境中具有较小的溶胀率和较好的尺寸稳定性,PEGDA的引入能够大幅度提高结冷胶的韧性,双网络凝胶的拉断伸长率可达340%,断裂能达1.01×103J/m2,与天然关节软骨相当.将成纤维细胞种植在凝胶内部进行体外三维立体培养,结果显示,细胞在凝胶内部生存状态良好,双网络凝胶的细胞负载率高于单网络结冷胶,说明该体系在生物医用领域具有良好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号