首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
开发高活性的顺酐加氢制丁二酸酐和γ-丁内酯催化剂具有重要的工业意义.顺酐加氢多采用Cu基和Ni基催化剂,但一般Cu基和Ni基催化剂存在反应温度高(170–260℃)和稳定性差等缺点,很有必要开发高活性的顺酐加氢催化剂.我们以拟薄水铝石作为Al2O3载体的前驱体,采用浸渍法制备了一系列镍铝尖晶石型衍生的不同Ni含量的Ni/Al2O3催化剂,并研究了它们在顺酐加氢反应中的催化性能.还原前Ni/Al2O3催化剂的X射线衍射结果表明,催化剂含有NiAl2O4物种.氮吸附结果显示,不同Ni含量的催化剂均具有介孔结构.氢-程序升温还原研究发现,Ni/Al2O3催化剂经750℃还原2 h后,其表面上NiAl2O4物种能被高效还原.X射线粉末衍射结果表明,750℃还原的Ni/Al2O3催化剂中金属Ni颗粒尺寸随着Ni负载量升高而增大.利用一氧化碳-程序升温脱附对750℃还原的Ni/Al2O3催化剂进行研究,发现750℃还原的催化剂上金属Ni物种含量从高到低依次为:Ni(7.5%)/Al2O3>Ni(5%)/Al2O3>Ni(2.5%)/Al2O3.采用CO化学吸附获得的Ni(2.5%)/Al2O3,Ni(5%)/Al2O3和Ni(7.5%)/Al2O3催化剂上金属Ni颗粒尺度分别为8.0,12.8和15.7 nm.活性研究结果表明,750℃还原的Ni(5%)/Al2O3催化剂具有最高的催化活性,这可能是由于Ni(5%)/Al2O3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度所致.进一步研究发现,在650–750℃还原温度下,Ni(5%)/Al2O3催化剂的还原度随着还原温度的升高而升高,Ni分散度随着还原温度的升高而降低.活性结果研究表明,700℃还原的Ni(5%)/Al2O3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度,具有最高的加氢催化活性,其在120℃,H2压力为0.5 MPa和质量空速为2 h?1的反应条件下,能获得近100%的顺酐转化率和90%的丁二酸酐选择性,同时该催化剂具有优良的稳定性.以上结果表明,尖晶石型衍生的Ni/Al2O3催化剂是一个十分有应用前景的顺酐加氢催化剂.  相似文献   

2.
Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制氢   总被引:14,自引:0,他引:14  
孙杰  吴锋  邱新平  王芳  郝少军  刘媛 《催化学报》2004,25(7):551-555
 采用浸渍、热分解和氢还原等步骤制备了两种纳米晶载体催化剂Ni/Al2O3和Ni/La2O3,应用X射线衍射、X射线光电子能谱、N2吸附和扫描电镜对催化剂的体相和表面结构进行了测定,采用固定床反应器考察了催化剂对乙醇水蒸气重整制氢反应的催化性能. 实验结果表明, 15.3%Ni/La2O3催化剂对乙醇的低温水蒸气重整反应表现出较高的催化活性和稳定性. 250 ℃时乙醇的转化率已达到80.7%,氢气的选择性为49.5%; 330 ℃时乙醇的转化率达到100%,氢气的选择性可达54.3%. 16.1%Ni/Al2O3催化剂对低温乙醇水蒸气重整反应的催化活性较低.  相似文献   

3.
 采用专利方法制备出一种新型的γ-Al2O3,并以其为载体,制备出加氢处理催化剂MoNiP/Al2O3.用PAS-CA,XPS,DRS,TPR和微型反应色谱等技术对γ-Al2O3和催化剂进行了表征,考察了Ni和P两种助剂的作用.结果表明,γ-Al2O3具有较大的孔径,集中的孔分布和较高的机械强度;活性金属Mo在γ-Al2O3表面上的化学分散量(分散阈值)可达5.04~5.82μmol/m2.因而特别适合用作高活性加氢处理催化剂的载体.引入的Ni主要是同Mo/Al2O3催化剂表面上较稳定的金属-载体相互作用复合物反应,并生成类NiMoO4化合物;在MoNi/Al2O3催化剂中引入P,有利于抑制四面体配位结构的物种Mo[T],增加八面体配位结构的物种Mo[O],改善催化剂的还原性能,从而提高催化剂的加氢处理活性.助剂Ni和P的最佳含量分别为w(Ni)=4.0%和w(P)=2.6%.  相似文献   

4.
 制备了以聚乙烯吡咯烷酮(PVP)稳定的 Ru-Pt/γ-Al2O3负载型双金属催化剂,用于2,5-二氯硝基苯中的硝基选择性加氢. 考察了催化剂还原方法,反应温度、压力、时间和添加金属离子对反应的影响. 结果表明,用乙醇还原的Ru-Pt/γ-Al2O3催化剂性能明显好于用其它方法还原的催化剂,在50 ℃和氢气压力1.0 MPa的条件下反应1 h,转化率为41.4%,生成2,5-二氯苯胺的选择性为63.5%. 如果在上述反应条件下向该催化体系中加入Sn4+离子,反应的活性和选择性则大幅度提高,转化率达100%,选择性为77.6%,延长反应时间至4 h,选择性可达99.3%,并且没有脱氯产物的生成.  相似文献   

5.
Mo、W对Ni/γ-Al2O3催化剂烯烃加氢性能的影响   总被引:1,自引:0,他引:1  
采用浸渍法制备了一系列NiM/γ-Al2O3(M=Mo、W)催化剂。通过馏分油(沸点70℃~350℃)烯烃的加氢饱和,考察了Mo、W对Ni基催化剂加氢性能的影响,并采用TPR、XRD、XPS对催化剂进行表征。TPR结果表明,添加助剂Mo(W)降低了低温还原峰温度,但还原度有所降低,而且NiMo催化剂还原度的降低幅度比NiW催化剂更大;XRD结果表明,Mo(W)的添加提高了活性组分Ni的分散度,并且Mo的助分散作用优于W;XPS结果表明,Mo(W)的引入提高了催化剂体系“表面NiAl2O4”的比例,Ni2p3/2谱峰的化学位移说明助剂的添加增强了Ni与载体γ-Al2O3之间的相互作用。  相似文献   

6.
分别通过浸渍法和共沉淀法制备了不同Ni负载量的Ni/Al2O3催化剂。考察了Ni负载量、制备方法以及反应温度对Ni/Al2O3催化甲烷裂解性能的影响。结果表明,在550℃,浸渍法制备的Ni/Al2O3催化剂,当Ni负载量为20%(质量分数)、Ni金属平均粒径为11.25 nm时,具有最佳的甲烷催化裂解效果,其每摩尔Ni的氢气产量和每克Ni碳产量分别为164 mol和15.30 g。催化剂制备方法对Ni/Al2O3甲烷催化裂解反应有显著影响,相同Ni负载量共沉淀法制备的Ni/Al2O3甲烷催化裂解总体效果要好于浸渍法制备的Ni/Al2O3,而且反应过程中生成的碳纤维较长,管径也较均一。550℃时,共沉淀法制备的Ni负载量为41.2%(质量分数)的Ni/Al2O3催化剂在反应至350 min时,仍保持着30%以上的转化率。  相似文献   

7.
考察了超高温焙烧的Ni/Al2O3对甲烷部分氧化反应的催化性能,发现该催化剂经还原后对甲烷部分氧化反应表现出较高的催化活性.X射线衍射结果显示,Ni/Al2O3催化剂在超高温(1200~1400℃)下焙烧后生成了NiAl2O4,且无相转移,进一步经950℃还原后催化剂中绝大部分Ni以单质Ni0形式存在.透射电子显微镜测试结果表明,不同超高温焙烧的催化剂经950℃还原后Ni晶粒的大小无明显差异.这说明超高温焙烧的Ni/Al2O3对甲烷部分氧化反应的高活性可归结为NiAl2O4的可还原性以及还原后Ni0相似的晶粒尺寸.同时还发现,焙烧温度越高,生成的NiAl2O4的还原温度越高.  相似文献   

8.
临氢水热处理对Ni/γ-Al_2O_3催化剂结构和性能的影响   总被引:1,自引:0,他引:1  
采用浸渍法制备了Ni负载量为17%的Ni/γ-Al2O3催化剂.在氢气压力4 MPa,温度180℃条件下对Ni/γ-Al2O3催化剂进行了不同时间的水热处理.通过XRD、TG、H2-TPR和低温氮气物理吸附等手段对水热处理前后的催化剂进行表征,并考察其催化1,4-丁炔二醇加氢反应性能.结果表明,临氢水热处理导致载体γ-Al2O3水合相变为薄水铝石,随着水热处理时间的延长,薄水铝石的结晶度逐渐增大.γ-Al2O3的水合相变引起活性组分Ni晶粒的聚集及催化剂比表面积和孔容下降,从而导致催化剂活性降低.  相似文献   

9.
用在线质谱法研究了Ni/Al2O3催化剂上甲烷分解温度和时间对积炭的影响。实验结果表明:在600~800℃内甲烷在还原的Ni/Al2O3催化剂上可分解为表面碳物种(即NiXC)和氢气,这种表面碳物种在较低的温度下可扩散进入体相,在高温下可逐步转化为低活性的碳物种。在800℃下由于表面碳物种不能扩散进入体相,金属镍中心迅速被表面碳物种覆盖,导致甲烷分解反应失活。  相似文献   

10.
2-甲基四氢呋喃(2-MTHF)是极具市场潜力的生物燃料、绿色溶剂和化学中间体.采用浸渍法制备Ni/γ-Al2O3催化剂,在固定床反应器评价其2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)反应性能.通过XRD、N2等温吸附-脱附、H2-TPR、NH3-TPD、TEM、H2吸附和XPS对催化剂结构和表面性质进行表征,研究Ni负载量、焙烧温度和反应条件对催化剂性能的影响规律.结果表明:Ni/γ-Al2O3催化剂的Ni金属面积、晶粒尺寸、反应温度和压力都会影响2-MF的转化率;孔结构、酸量和反应温度是影响2-MTHF选择性的主要原因,平均孔径大、酸量大和适宜的反应温度有利于提高2-MTHF选择性. 400℃焙烧的负载量为15%的Ni/γ-Al2O3催化剂, Ni金属面积大、晶粒尺寸小、总酸量多,催化剂表面的金属活性中心与酸性中心协同作用促进了2-MF呋喃环上C=C加氢生成2-MTHF,性能较优.在2 MPa、100℃、WHSV=2.7 h-1、H2/2-MF=6.4的条件下,该催化剂上2-MF转化率为99.8%, 2-MTHF选择性为98.0%,催化剂可以稳定运行40 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号