首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
二元铜团簇催化水煤气变换反应机理的理论研究   总被引:1,自引:0,他引:1  
水煤气变换反应是一个重要的反应体系, 它可以去除H2中少量的CO而被应用在质子膜燃料电池中. 然而关于水煤气变换的反应机理还存在一定的争议, 为阐明其反应机理, 本文采用密度泛函理论PBE方法, 金属元素采用Lanl2dz基组, 非金属元素采用6-311++G(d,p)基组, 对系列二元铜团簇Cu6TM (TM=Co, Rh, Ir, Ni, Pd, Pt, Ag, Au)催化水煤气变换反应机理进行了研究. 结果表明: CO分子比H2O分子更容易吸附到团簇上. 水煤气变换反应包括三种反应机理: 羧基反应机理, 氧化还原反应机理, 甲酸反应机理, 相对应的基元反应分别为CO*+O*→CO2(g), CO*+OH*→COOH*→CO2(g)+H*, 和CO*+H*+O*→CHO*+O*→HCOO**→CO2(g)+H*. 甲酸根是实验中最可能检测到的中间物, 这是由于生成甲酸根有较低的能垒以及甲酸根解离有较高的解离能. Co, Rh, Ni, Pd掺杂在Cu7团簇中对水煤气转化反应的催化效果明显比纯Cu7团簇催化效果好. 采用CO的初始消耗率以及最终CO2的产率进一步研究了在Cu6TM (TM=Co, Rh, Ni, Pd)表面甲酸根是反应过程中的旁观者还是一种重要的中间物. 计算结果还表明, 对于Cu6TM (TM=Ni, Pd), 由于CO较低的反应能垒, 水煤气变换反应主要按照氧化还原反应机理进行反应, 而对于Cu6TM (TM=Co, Rh), 水煤气变换反应三种反应机理均可进行反应. 本文的结果有助于理解水煤气变换反应和设计更好的催化剂.  相似文献   

2.
采用共沉淀法合成了掺杂不同助剂的Cu-M/ZnO (Cu:ZnO 物质的量比=5∶4,M=Zr4+、Al3+、Mg2+,助剂含量为4.0%)用于催化草酸二甲酯(Dimethyl oxalate, DMO)选择加氢反应催化剂。结果表明,微量掺杂Al3+、Mg2+助剂嵌入于ZnO 晶相,Zr4+助剂嵌入Cu晶相均能显著促进Cu/ZnO 催化剂中铜分散;其中,Mg2+助剂能够有效增强Cu、ZnO 物相间相互作用,Zr4+助剂能够有效增强Cu、ZrO2物相间相互作用。催化DMO加氢选择加氢反应,Cu/ZnO 催化剂乙二醇(Ethylene glycol,EG)收率仅为75.0%,Cu-Al/ZnO 、Cu-Zr/ZnO 和Cu-Mg/ZnO 催化剂的EG收率分别为90.0%、85.0%、95.0%。相比Cu/ZnO 和Cu-Al/ZnO 催化剂催化DMO选择加氢反应易于失活,Cu-Zr/ZnO 和C...  相似文献   

3.
以介孔分子筛SBA-15 为载体, 通过分步浸渍硝酸镍、磷酸氢二铵、钼酸铵, 然后在H2气流下程序升温还原(H2-TPR), 制备了一系列不同Mo 含量的Mo-Ni2P/SBA-15 催化剂. 采用X 射线衍射(XRD)、氮气吸脱附(BET)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对催化剂的结构进行了表征, 评价了催化剂对二苯并噻吩(DBT)的加氢脱硫(HDS)活性. 结果表明, Mo-Ni2P/SBA-15 催化剂仍然保留有介孔结构, 催化剂的物相主要是Ni2P. 催化剂表面的Ni 以Niδ+和Ni2+形式存在; P以Pδ-和P5+形式存在; Mo以Moδ+和Mo6+形式存在. Mo能促进催化性能的提高, 其中Mo含量为1% (w, 质量分数)的Mo-Ni2P/SBA-15 催化剂具有最好的二苯并噻吩加氢脱硫催化活性, 在反应温度为380 ℃, 反应压力为3.0 MPa的条件下, 二苯并噻吩的转化率可达99.03%, 所有考察的Mo-Ni2P/SBA-15都以直接加氢脱硫(DDS)途径为主.  相似文献   

4.
采用沉淀法制备了不同焙烧温度的Cr2O3催化剂,用于1,1,2-三氯乙烷(TCE)气相脱氯化氢制备二氯乙烯的反应。 采用X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、氨气程序升温脱附(NH3-TPD)、X射线光电子能谱(XPS)表征手段,研究了Cr2O3催化剂气相催化裂解TCE脱氯化氢反应及其反应机理。 结果表明,Cr2O3催化剂上TCE气相脱氯化氢反应的转化率随着催化剂焙烧温度的升高逐渐降低,然而顺-1,2-二氯乙烯(cis-DCE)的选择性先增大后减小。 400 ℃焙烧的Cr2O3催化剂催化性能最好,TCE转化率为70.8%,顺-1,2-二氯乙烯的选择性为90.0%。 然而,催化剂的单位面积反应速率随着焙烧温度升高先提高后下降,400 ℃焙烧催化剂的单位面积反应速率为0.801×10-2 μmol/(s·m2)。 催化剂的单位面积反应速率和顺-1,2-二氯乙烯(cis-DCE)的选择性与催化剂表面Cr2O3物种具有很好的对应关系,表明催化剂表面Cr2O3物种有利于脱氯化氢反应。 以酸中心为活性中心计算得到的转换频率(TOF)变化趋势与单位面积反应速率相一致,400 ℃焙烧的催化剂的TOF为2.82×10-5 s-1,表明Cr2O3催化剂Cr物种合适的平均价态(~3.20)有利于脱氯化氢反应。  相似文献   

5.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

6.
六次甲基四胺(HMT)与氯化苄加成所得的Sommelet反应中间产物的单晶样品用SYNTEX R3型四圆衍射仪,以θ/2θ扫描方式收集了2677个衍射数据并进行了结构分析.晶体属空间群P212121.晶胞参数α=7.692(1)Å,b=18.405(3)Å,c=19.059(3)Å,晶胞中含八个G6H5CH2Cl·N4(CH2)6.经PL,K,B及吸收因子的校正得绝对强度.全部非氢原子坐标的初始参数由SHELXTL直接法程序所得的E图导出.对坐标及热参数经六轮块矩阵最小二乘法修正,再加入氢原子修正两轮后得一致性因子R1=0.040,R2=0.032(加权).结构分析证实,此Sommelet反应中间物由季胺盐阳离子与氯离子所组成.在晶体中观察到苄基与HMT中N*直接键连,并导致HMT中N*—C*键有极显著的键长增长效应,而与N*—C*邻接的C*—N键则有所增强.由此预期当此加合物水解时,N*—C*弱键首先瓦解是较合理的.  相似文献   

7.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

8.
本文用荧光光谱法初步研究了卟啉与金属离子配位反应机理和部分催化剂的催化机理.实验发现,在一定条件下,卟啉以一种与其主要存在形式不同的变形体H2P*存在,根据H2P*的存在和产生的条件,对卟啉与金属离子配位反应的一般条件作出了较为满意的阐述.  相似文献   

9.
以NH4Y分子筛为载体、 乙酰丙酮铜为铜源, 采用固相反应法制备了无氯CuY催化剂, 并用于催化甲醇氧化羰基化合成碳酸二甲酯(DMC). 结合不同反应时间催化剂的X射线衍射(XRD)、 N2吸附-脱附、 热重(TG)、 程序升温脱附/还原(NH3-TPD/H2-TPR)、 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征结果, 分析了反应过程中Cu物种演变对其催化活性的影响. 结果表明, 新鲜催化剂中铜物种主要以Cu+形式存在, 占铜物种的48%; 随着反应的进行, 活性中心Cu+逐渐被氧化为Cu2+, 进而生成CuO物种, 部分CuO逐渐迁移至催化剂外表面. 在反应100 h内, Cu+含量逐渐减小至36.7%, CuO含量增加, 导致DMC的时空收率及选择性不断下降, 副产物二甲氧基甲烷(DMM)和甲酸甲酯(MF)的选择性逐渐提高. 当反应时间延长至190 h时, Cu+含量为33.6%, 略有下降, DMC的时空收率和选择性趋于平稳. 继续延长反应时间至300 h, 催化剂中铜物种状态基本不变, 催化剂催化性能保持稳定.  相似文献   

10.
以3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MEMO)表面改性的介孔分子筛SBA-15为载体,制备了一系列介孔分子筛/硅烷偶联剂@杂多酸复合催化剂SBA-15/MEMO@HnXW12O40(X=P5+,Si4+,B3+;n=3,4,5),并利用FTIR、P-XRD、TEM、N2吸附-脱附对其结构进行表征。以SBA-15/MEMO@HnXW12O40(X=P5+,Si4+,B3+;n=3,4,5)为负载型杂多酸催化剂对柠檬酸三丁酯的催化合成进行研究,分别考察了酸醇摩尔比、催化剂用量、反应温度、反应时间对催化合成柠檬酸三丁酯酯化率的影响,并获得合成柠檬酸三丁酯的最佳工艺条件。结果表明:当负载型硅钨酸催化剂的负载量为50%、催化剂用量为3.8%、酸醇摩尔比为1∶4、反应温度为140℃、反应时间为6 h、环己烷用量为5 mL时酯化率可达97.56%,重复使用7次后酯化率仍可达62.67%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号