首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
本文用中和法合成了基于烷基咪唑的甘氨酸离子液体[C3mim][Gly](1-丙基-3-甲基咪唑甘氨酸离子液体)和[c4miml[Gly](1-丁基-3.甲基咪唑甘氨酸离子液体),在298.15K下,0.0400-0.5000molkg^-1浓度范围内测定了不同浓度[C4mim][Oly]和[c3mim][Gly]离子液体水溶液的密度和表面张力,得到了溶液等张比容的实验值,提出了预测不同浓度溶液等张比容的经验方程,利用这个经验方程和李以圭等人提出的溶液表面张力模型,分别估算了这两种离子液体水溶液的表面张力,其估算值和实验值在误差范围内很好地吻合.  相似文献   

2.
在288.15-318.15 K温度范围内测定了不同浓度离子液体1-乙基-3-甲基咪唑醋酸盐([C2mim][OAc])水溶液的表面张力和密度;在改进李以圭等人的溶液表面张力模型基础上,提出摩尔表面Gibbs自由能新概念,建立了摩尔表面Gibbs自由能随溶液浓度变化的线性经验方程,利用这个经验方程估算了[C2mim][OAc]水溶液的摩尔表面Gibbs自由能,并进一步预测了该溶液的表面张力,其预测值与相应的表面张力实验值高度相关并非常相似。由此可见,摩尔表面Gibbs自由能与等张比容极其类似,可能成为预测离子液体及其溶液性质的一种新的半经验方法。在指定溶液浓度下,根据溶液的摩尔表面Gibbs自由能随温度呈线性变化的规律,得到了新的Eötvös方程,与传统的Eötvös方程相比,新Eötvös方程的每一个参数都有明确的物理意义:斜率的负值是摩尔表面熵,截距是摩尔表面焓,在指定浓度的溶液中摩尔表面焓几乎不随温度变化。  相似文献   

3.
将半理想溶液理论和Butler方程相结合建立了预测多元电解质溶液表面张力的新型线性预测方程.新方程可由二元系数据预测多元系的表面张力数据,而不涉及任何多元交互作用参数.利用不同温度下24个混合电解质溶液的表面张力数据对新方程进行了系统检验.结果表明新方程可利用298.15K时二元系的渗透压系数和不同温度下二元系的表面张力数据预测不同温度下高浓度的多元系的表面张力数据,且预测结果与实验数据符合得很好,并且预测结果普遍优于基于Pitzer方程的表面张力模型.  相似文献   

4.
咪唑基离子液体的物理化学性质估算及预测(英文)   总被引:1,自引:0,他引:1  
根据经验和半经验方程及空隙模型理论,可以估算及预测离子液体在298.15K的物理化学性质.本文讨论了离子液体的分子体积,密度,标准熵,晶格能,表面张力,等张比容,摩尔蒸发焓,空隙体积,空隙率和热膨胀系数.通过实验测得的三种离子液体1-乙基-3-甲基咪唑硫酸乙酯([C2mim][EtSO4)]),1-丁基-3-甲基咪唑硫酸辛酯([C4mim][OcSO4])和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐([C2mim][NTf2])的密度和表面张力估算了它们的其它物理化学性质.由这三种离子液体的分子体积及等张比容预测了同系列中其它离子液体[Cnmim][EtSO4],[Cnmim][OcSO4]和[Cnmim][NTf2](n=1-6)的分子体积及等张比容,由此计算出它们的密度及表面张力.进而预测了它们的物理化学性质.将预测的离子液体[C4mim][NTf2]和[C2mim][OcSO4]的密度值与文献报导的实验值进行比较,其偏差在实验误差范围内.最后,将由Kabo经验方程计算的七个离子液体[C2mim][EtSO4]、[C4mim][OcSO4]、[C2mim][NTf2]、[C4mim][NTf2]、丁基三甲基铵双三氟甲磺酰亚胺盐([N4111][NTf2])、甲基三辛基铵双三氟甲磺酰亚胺盐([N8881][NTf2])和1-辛基-3-甲基吡啶四氟硼酸盐([m3opy][BF4])的摩尔蒸发焓与由Verevkin简单规则预测的摩尔蒸发焓进行比较,发现两者符合很好.因此,在缺乏密度和表面张力实验数据的情况下,可以用Verevkin简单规则来预测离子液体的摩尔蒸发焓.  相似文献   

5.
付东  王兰芬  吴湘铖 《化学学报》2012,70(3):134-139
用全自动表面张力仪测定了293.15~323.15 K温度范围内,具有不同CO2载荷的二乙醇胺(Diethanolamine,DEA)水溶液的表面张力,提出了适宜表达DEA-CO2水溶液表面张力的热力学模型,计算结果与实验值吻合良好.在实验测定和理论计算的基础上,阐明了温度、DEA浓度和CO2载荷对DEA-CO2水溶液表面张力的影响规律.  相似文献   

6.
用全自动表面张力仪测定了293.15-323.15K温度范围内,具有不同C02载荷的乙醇胺(Monoethanolamine,MEA)水溶液的表面张力,提出了计算MEA-CO2-水体系表面张力的半经验模型,计算结果与实验值吻合良好.通过实验和计算相结合,阐明了温度、MEA浓度和C02载荷对MEA-CO2-水体系表面张力的影响规律.  相似文献   

7.
本文用高精度数字式振荡管密度计测定了288~323K范围内NaCl-KCl混合溶液的密度,溶液的离子强度范围从0.1到4mol·kg~(-1)。用密度实验值计算了三元体系的超额体积并拟合得到了实验温度和浓度范围内的Pitzer模型参数,模型计算值与实验值的偏差在±0.0004g·cm~(-3)以内。用Pitzer模型计算了不同离子强度下三元体系在298.15K下的混合体积。  相似文献   

8.
用偏最小二乘法(PLS)和人工神经网络(ANN)方法对润滑剂分子结构与表面张力和粘度之间的关系进行了定性分析和定量计算,采用的结构参数有分配系数、分子体积、分子表面积、溶度积、摩尔折射度和等张比容。定性分析结果与实验结果一致,定量计算结果与实验结果符合较好。  相似文献   

9.
本文根据前文提出的高聚物溶液中大分子链尺寸的浓度依赖关系式,结合Zimm用于计算稀溶液第二维里系数的统计力学硬球模型,利用聚合物的数均分子量及其Mark-Houwink方程,计算了16种聚合物-溶剂体系在不同溶液浓度范围内的比浓渗透压。结果表明,计算值与稀溶液、亚浓溶液浓度范围内的实验值相当一致,甚至与浓溶液浓度范围内的实验值也十分接近。这显示了本法用于计算高分子溶液的渗透压是令人满意的。  相似文献   

10.
在288.15-328.15 K温度范围内,测量了不同浓度的氨基酸离子液体[C_2mim][Ala]水溶液的密度和粘度,根据J ones-Dole方程得到了较大正值的粘度B系数并且dB/dT0。借助Feakins理论,计算了溶质对溶液粘滞流动活化自由能贡献Δμ_2~(≠0),根据Δμ_2~(≠0)随温度的线性变化,进而得到流动活化熵ΔS_2~(≠0)和活化焓ΔH_2~(≠0);在E yring液体粘度的过渡态理论基础上,提出了预测离子液体[C_2mim][Ala]水溶液粘度的半经验新方法,其预测值与相应的实验值很好的一致。  相似文献   

11.
A simple method to predict the densities of a range of ionic liquids from their surface tensions, and vice versa, using a surface-tension-weighted molar volume, the parachor, is reported. The parachors of ionic liquids containing 1-alkyl-3-methylimidazolium cations were determined experimentally, but were also calculated directly from their structural compositions using existing parachor contribution data for neutral compounds. The calculated and experimentally determined parachors were remarkably similar, and the latter data were subsequently employed to predict the densities and surface tensions of the investigated ionic liquids. Using a similar approach, the molar refractions of ionic liquids were determined experimentally, as well as calculated using existing molar refraction contribution data for uncharged compounds. The calculated molar refraction data were employed to predict the refractive indices of the ionic liquids from their surface tensions. The errors involved in the refractive index predictions were much higher than the analogous predictions employing the parachor, but nevertheless demonstrated the potential for developing parachor and molar refraction contribution data for ions as tools to predict ionic liquid physical properties.  相似文献   

12.
Densities of four aqueous H3BO3 solutions (0.062, 0.155, 0.315, and 0.529 mol-kg–1) have been measured in the liquid phase with a constant volume piezometer immersed in a precisely controlled liquid thermostat. Measurements were made at temperatures between 296 and 573 K and pressures from 0.82 to 48 MPa. The total uncertainties of the density, pressure, temperature, and molality measurements were estimated to be less than 0.06%, 0.05%, 10 mK, and 0.0005 mol-kg–1, respectively. The accuracy of the method was confirmed by PVT measurements on pure water for two isobars (30 and 39 MPa) at temperatures from 313 to 573 K. The experimental and calculated (IAPWS formulation) densities for pure water show excellent agreement which is within their experimental uncertainties (average absolute deviation, AAD=0.012%;). Apparent and partial molar volumes were derived using the measured densities for solutions and pure water, and these results were extrapolated to zero concentration to yield the partial molar volumes of the electrolyte (H3BO3) at infinite dilution. The temperature, pressure, and concentration dependencies of the apparent and partial molar volumes were studied. Small pressure and concentration effects on the apparent molar volumes were found at temperatures up to 500 K. The parameters of a polynomial type of equation of state for the specific volume Vsol(P, T, m) as a function of pressure, temperature, and molality were obtained with a least-squares method using the experimental data. The root-mean-square deviation between measured and calculated values from this polynomial equation of state is ±0.2 kg-m–3 for density. Measured values of the solution densities and the apparent and partial molar volumes are compared with data reported in the literature.  相似文献   

13.
Summary. The density and refractive index of 1,4-dioxane and benzene solutions of poly(oxyethylene) glycols of the type HO–(CH2CH2O)n–H (n varying from 4 to 36) were measured at 298.15K. From the experimental data the apparent specific volume and the apparent specific refraction at infinite dilution were calculated. The limiting apparent specific volume and the limiting apparent specific refraction were found to be inversely proportional to the number average molecular weight of solute. From the limiting apparent specific values at the infinite degree of polymerization, the partial molar volume and partial molar refraction of the monomeric unit were calculated. The partial molar volume as well as the partial molar refraction of the investigated compounds at infinite dilution are additive and depend linearly on the number of oxyethylene groups. The volumetric data were analyzed in terms of the intrinsic volume of solute molecules and by a void partial molar volume. The packing density of the investigated compounds approaches a uniform value as the size of the molecules increases and in both solvents limiting values are reached.  相似文献   

14.
A new air and water stable ionic liquid (IL) based on rhenium, N-butyl-pyridine perrhenate ([C4Py][ReO4]), was synthesized. The density and surface tension of the IL were determined over the temperature range of (293.15–343.15) K. In terms of the Glasser theory of IL and parachor, a series of physico-chemical properties: molecular volume, standard entropy, surface tension, and molar enthalpy of vaporization were predicted, respectively. According to the interstice model, the thermal expansion coefficient of the IL was calculated and in comparison with experimental value, it is in good agreement by 3.92%.  相似文献   

15.
The density and surface tension for pure ionic liquid N-octyl-pyridinium nitrate were measured from (293.15 to 328.15) K. The coefficient of thermal expansion, molecular volume, standard entropies, and lattice energy were calculated from the experimental density values. The critical temperature, surface entropy, surface enthalpy, and enthalpy of vaporization were also studied from the experimental surface tension results. Density and surface tension were also determined for binary mixtures of (N-octyl-pyridinium nitrate + alcohol) (methanol, ethanol, and 1-butanol) systems over the whole composition range at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich–Kister equation to determine the fitting parameters and the root mean square deviations. The partial molar volume, excess partial molar volume, and apparent molar volume of the component IL and alcohol in the binary mixtures were also discussed.  相似文献   

16.
Summary. The apparent molar volume of lithium, sodium, potassium, and tetramethylammonium cyclohexylsulfamate was determined from the density data of their aqueous solutions at 293.15, 298.15, 303.15, 313.15, and 323.15 K. The apparent molar expansibility was calculated from the apparent molar volume at various temperatures. The limiting apparent molar volume and apparent molar expansibility were evaluated and divided into their ionic components. The partial molar ionic expansibilities were discussed in terms of the hydration of the ion in solution, as well as in terms of the hydration effects on the solute as a whole. From the partial molar expansibility of the solute at infinite dilution the partial molar expansibility of the hydration shell was deduced. The coefficients of thermal expansion of the investigated solutions at 298.15 K were calculated and are presented graphically. The density of the investigated solutions can be adequately represented by an equation derived by Root.  相似文献   

17.
The apparent molar volume of lithium, sodium, potassium, and tetramethylammonium cyclohexylsulfamate was determined from the density data of their aqueous solutions at 293.15, 298.15, 303.15, 313.15, and 323.15 K. The apparent molar expansibility was calculated from the apparent molar volume at various temperatures. The limiting apparent molar volume and apparent molar expansibility were evaluated and divided into their ionic components. The partial molar ionic expansibilities were discussed in terms of the hydration of the ion in solution, as well as in terms of the hydration effects on the solute as a whole. From the partial molar expansibility of the solute at infinite dilution the partial molar expansibility of the hydration shell was deduced. The coefficients of thermal expansion of the investigated solutions at 298.15 K were calculated and are presented graphically. The density of the investigated solutions can be adequately represented by an equation derived by Root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号