首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
In this work, we propose solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME) as a simple, rapid and efficient sample pretreatment technique for the extraction and preconcentration of organochlorine pesticides (OCPs) from environmental water samples. Separation and analysis of fifteen OCPs was carried out by gas chromatography–mass spectrometry (GC/MS). Parameters affecting the extraction efficiency were systematically investigated. The detection limits were in the range of 2–50 ng L−1 using selective ion monitoring (SIM). The precision of the proposed method, expressed as relative standard deviation, varied between 3.5 and 10.2% (n = 5). Results from the analysis of spiked environmental water samples at the low-ppb level met the acceptance criteria set by the EPA.  相似文献   

2.
In this article, effervescence assisted dispersive liquid–liquid microextraction with extractant removal by magnetic nanoparticles is presented for the first time. The extraction technique makes use of a mixture of 1-octanol and bare Fe3O4 magnetic nanoparticles (MNPs) in acetic acid. This mixture is injected into the sample, which is previously fortified with carbonate, and as a consequence of the effervescence reaction, CO2 bubbles are generated making possible the easy dispersion of the extraction solvent. In addition, the MNPs facilitates the recovery of the 1-octanol after the extraction thanks to the interaction between hydroxyl groups present at the surface of the MNPs and the alcohol functional group of the solvent. The extraction mode has been optimized and characterized using the determination of six herbicides in water samples as model analytical problem. The enrichment factors obtained for the analytes were in the range 21–185. These values permit the determination of the target analytes at the low microgram per liter range with good precision (relative standard deviations lower than 11.7%) using gas chromatography (GC) coupled to mass spectrometry (MS) as analytical technique.  相似文献   

3.
Two procedures are proposed based on ultrasound-assisted emulsification and single-drop liquid–liquid microextraction for the sensitive determination of seven strobilurin and six oxazole fungicides in fruits and juice samples. Both miniaturized techniques are coupled to gas chromatography with mass spectrometry in the selected ion monitoring mode, GC–MS(SIM). The procedures use low density organic solvents, and several factors influencing the emulsification, extraction and collection efficiency are optimized. The detection limits obtained at a signal-to-noise ratio of 3 are below the MRLs set by the European Commission. Enrichment factors are between 140–1140 for the first technique used and 80–1600 for the latter. The recoveries obtained for spiked samples are satisfactory for all compounds. The methods are validated according to the Commission Decision 2002/657/EC. Different fruit and juices are analyzed by the proposed method and none of the samples contained fungicide residues above the detection limits.  相似文献   

4.
The article describes a simple sample pretreatment procedure for the analysis of ten organophosphorus pesticides using dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS) in three distinctively different types of matrices: fresh fruits, fresh vegetables and dried herbs. The method was carefully developed, focusing on the chemistry of various dispersive solvents, to achieve simultaneous, comprehensive extraction and preconcentration in a great span of selected matrices. According to matrix-matched validation study, the set of optimized DLLME conditions has been proven robust to determine target OPPs within a wide linear range from 0.1 to 1000 μg L−1. With limited usage of organic extractants, remarkable enrichment factors up to 100-fold were obtained, enabling ultra-trace pesticide quantification down to sub-ppt levels at 0.12–4.92 ng kg−1. Practical application of the method was illustrated by quantitative recovery (70–119%) and good precision (2.6–10% R.S.D.) in a representative range of three fruits and four vegetable commodities featured by the CODEX Alimentarius classification as well as their unique matrix compositions. A careful selection of dried herbs was further classified based on their morphological structures to validate analytical ruggedness of the method. Compared with existing methods for food analysis vis-à-vis OPPs, the present method is superior in terms of high sample throughput, minimal solvent consumption, and small sample size requirement. An additional, significant aspect of this universal DLLME method is that it models sample pretreatment methods with wide coverage of analytical matrices that are more effective, more comprehensive, and more flexible than those currently being used.  相似文献   

5.
A novel approach for the determination of seven fungicides (metalaxyl-M, penconazole, folpet, diniconazole, propiconazole, difenoconazole and azoxystrobin) in wine samples is presented. Analytes were extracted from the matrix and transferred to a small volume of a high density, water insoluble solvent using solid-phase extraction (SPE) followed by dispersive liquid–liquid microextraction (DLLME). Variables affecting the performance of both steps were thoroughly investigated (metalaxyl-M was not included in some optimisation studies) and their effects on the selectivity and efficiency of the whole sample preparation process are discussed. Under optimised conditions, 20 mL of wine were first concentrated using a reversed-phase sorbent and then target compounds were eluted with 1 mL of acetone. This extract was mixed with 0.1 mL of 1,1,1-trichloroethane (CH3CCl3) and the blend added to 10 mL of ultrapure water. After centrifugation, an aliquot (1–2 μL) of the settled organic phase was analyzed by gas chromatography (GC) with electron capture (ECD) and mass spectrometry (MS) detection. The method provided enrichment factors (EFs) around 200 times and an improved selectivity in comparison to use of SPE as single sample preparation technique. Moreover, the yield of the global process was similar for red and white wine samples and the achieved limits of quantification (LOQs) (from 30 to 120 ng L−1 and from 40 to 250 ng L−1, for GC–ECD and GC–MS, respectively) were low enough for the determination of target species in commercial wines. Among compounds considered in this work, metalaxyl-M and azoxystrobin were found in several wines at concentrations from 0.8 to 32 ng mL−1.  相似文献   

6.
Dynamic single-drop microextraction (SDME) was automatized employing an Arduino-based lab-made Cartesian robot and implemented to determine parabens in wastewater samples in combination with liquid chromatography–tandem mass spectrometry. A dedicated Arduino sketch controls the auto-performance of all the stages of the SDME process, including syringe filling, drop exposition, solvent recycling, and extract collection. Univariate and multivariate experiments investigated the main variables affecting the SDME performance, including robot-dependent and additional operational parameters. Under selected conditions, limit of detections were established at 0.3 µg/L for all the analytes, and the method provided linear responses in the range between 0.6 and 10 µg/L, with adequate reproducibility, measured as intraday relative standard deviations (RSDs) between 5.54% and 17.94%, (n = 6), and inter-days RSDs between 8.97% and 16.49% (n = 9). The robot-assisted technique eased the control of dynamic SDME, making the process more feasible, robust, and reliable so that the developed setup demonstrated to be a competitive strategy for the automated extraction of organic pollutants from water samples.  相似文献   

7.
A novel method based on the paired ion electrospray ionization (PIESI) mass spectrometry has been developed for determination of acidic pesticides at ultratrace levels in surface and ground waters. The proposed approach provides greatly enhanced sensitivity for acidic pesticides and overcomes the drawbacks of the less sensitive negative ion mode ESI-MS. The limits of detection (LODs) of 19 acidic pesticides were evaluated with four types of dicationic ion-pairing reagent (IPR) in both single ion monitoring (SIM) and selected reaction monitoring (SRM) mode. The LOD of 19 pesticides obtained with the use the optimal dicationic ion-pairing reagent ranged from 0.6 pg to 19 pg, indicating the superior sensitivity provided by this method. The transition pathways for different pesticide-IPR complexes during the collision induced dissociation (CID) were identified. To evaluate and eliminate any matrix effects and further decrease the detection limits, off-line solid-phase extraction (SPE) was performed for DI water and a river water matrix spiked with 2000 ng L−1 and 20 ng L−1 pesticides standards respectively, which showed an average percent recovery of 93%. The chromatographic separation of the acidic pesticides was conducted by high-performance liquid chromatography (HPLC) using a C18 column (250 mm × 2.1 mm) in the reversed phase mode using linear gradient elution. The optimized HPLC–PIESI-MS/MS method was utilized for determination of acidic pesticide at ng L−1 level in stream/pond water samples. This experimental approach is 1–3 orders of magnitude more sensitive for these analytes than other reported methods performed in the negative ion mode.  相似文献   

8.
In this paper, a new version of salting-out homogenous liquid–liquid extraction based on counter current mode combined with dispersive liquid–liquid microextraction has been developed for the extraction and preconcentration of some pesticides from aqueous samples and their determination by gas chromatography–flame ionization detection. In order to perform the method, aqueous solution of the analytes containing acetonitrile and 1,2-dibromoethane is transferred into a narrow bore tube which is filled partially with NaCl. During passing the solution through the tube, fine droplets of the organic phase are produced at the interface of solution and salt which go up through the tube and form a separated layer on the aqueous phase. The collected organic phase is removed and injected into de-ionized water for more enrichment of the analytes. Under the optimum extraction conditions, the method shows broad linear ranges for the target analytes. Enrichment factors and limits of detection for the selected pesticides are obtained in the ranges of 3480–3800 and 0.1–5 μg L−1, respectively. Relative standard deviations are in the range of 2–7% (n = 6, C = 50 or 100 μg L−1, each analyte). Finally, some aqueous samples were successfully analyzed using the developed method.  相似文献   

9.
A simple and fast method of low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction (ST-DLLME) was developed for the highly sensitive determination of carbamate pesticides in the water samples by gas chromatography-tandem mass spectrometry (GC-MSMS). After dispersing, the obtained emulsion cleared into two phases quickly when an aliquot of acetonitrile was introduced as a chemical demulsifier into the aqueous bulk. Therefore, the developed procedure does not need centrifugation to achieve phase separation. It was convenient for the usage of low-density extraction solvents in DLLME. Under the optimized conditions, the limits of detection for all target carbamate pesticides were in range of 0.001–0.50 ng mL−1 and the precisions were in the range of 2.3–6.8% (RSDs, 2 ng mL−1, n = 5). The proposed method has been successfully applied to the analysis of real water samples and good spiked recoveries over the range of 94.5–104% were obtained.  相似文献   

10.
As a suitable way for routine screening of pesticides and control of other organic contaminants in water, the combination of liquid chromatography triple quadrupole tandem mass spectrometry (LC–QqQ-MS/MS) and liquid chromatography–hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS) has been applied to the analysis of 63 surface and waste water samples after conventional solid-phase extraction (SPE). The extracts were screened for 43 pesticides or degradation products by LC–QqQ-MS/MS achieving limits of detection (LOD) ranged from 0.04 to 2 ng L−1. Of the 43 selected pesticides, 33 were detected in water samples. The ESI–QTOF MS instrument was run using two simultaneous acquisition functions with low and high collision energy (MSE approach) and acquiring the full mass spectra. A home-made database containing more than 1100 organic pollutants was used for substance identification. Around 250 of these compounds were available at the laboratory as reference standards. Five pesticides and 3 of their degradation products, different to those selected in the QqQ method, were detected by QqTOF-MS. Thirteen pharmaceuticals and two drugs of abuse were also identified in the samples. In practice, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. Mutual confirmation and evidence of co-occurrence of several other organic contaminants were the main advantages of the combination of both techniques.  相似文献   

11.
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis.  相似文献   

12.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

13.
A fast and novel sample preparation procedure for the determination of triclosan (TCS) and methyltriclosan (MTCS) in water samples is presented. Dispersive liquid–liquid microextraction, using a ternary mixture consisting of a disperser, an extractant and N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) as derivatization reagent, was used for the simultaneous derivatization, case of TCS, and concentration of both species in different water samples. Analytes were determined by gas chromatography with tandem mass spectrometry (GC–MS/MS). Influence of different factors on the performance of the sample preparation process is thoroughly discussed. Under final working conditions, a mixture of 1 mL of methanol, 40 μL of 1,1,1-trichloroethane and the same volume of MTBSTFA was added to 10 mL of water in a conical bottom glass tube. After centrifugation, the settled phase was injected directly in the chromatographic system. TCS was quantitatively extracted and converted into the corresponding tert-butyldimethylsilyl derivative, whereas for MTCS an extraction yield around 90% was attained. Limits of quantification between 2 and 5 ng L−1 and reproducibility values below 10% were achieved; moreover, the performance of the extraction process was scarcely affected by the type of water sample. Globally, these values are comparable, or even better, to those reported for other approaches applied to the determination of same compounds, with the advantage of a shorter sample preparation step. Analysis of surface and wastewater samples confirmed the ubiquitous presence of TCS in the aquatic environment at levels from 20 to 700 ng L−1.  相似文献   

14.
A new simple and rapid dispersive liquid–liquid microextraction method has been developed for the extraction and analysis of organochlorine pesticides (OCPs) in water samples. The method is based on the solidification of a floating organic drop (DLLME-SFO) and is combined with gas chromatography/electron capture detection (GC/ECD). Very little solvent is required in this method. The disperser solvent (200 μL acetonitrile) containing 10 μL hexadecane (HEX) is rapidly injected by a syringe into the 5.0 mL water sample. After centrifugation, the fine HEX droplets (6 ± 0.5 μL) float at the top of the screw-cap test tube. The test tube is then cooled in an ice bath. After 5 min, the HEX solvent solidifies and is then transferred into a conical vial, where it melts quickly at room temperature, and 1 μL of it is injected into a gas chromatograph for analysis. Under optimum conditions, the enrichment factors and extraction recoveries are high and range between 37–872 and 82.9–102.5%, respectively. The linear range is wide (0.025–20 μg L−1), and the limits of detection are between 0.011 and 0.11 μg L−1 for most of the analytes. The relative standard deviation (RSD) for 1 μg L−1 of OCPs in water was in the range of 5.8–8.8%. The performance of the method was gauged by analyzing samples of lake and tap water.  相似文献   

15.
A rapid and simultaneous method for identification and quantification of pesticides residues in water samples have been developed and applied to the analysis of real samples. Tap and San Francisco River water samples were collected from Propria town and Aracaju city in the state of Sergipe, Brazil. A new single-drop microextraction (SDME) followed by gas chromatography–mass spectrometry techniques were used to determine the dimethoate, methyl parathion, ethion (organophosphates) and permethrin (pyrethroid) pesticides in water samples. The parameters linearity, linear range, precision, accuracy, sensitivity and robustness were studied for validation of the SDME/GC–MS method. An important point to this study is that plots of relative response and logarithmic concentrations were used to verify that the measurements were within the linear dynamic range of the method. In order to enhance high linearity of analytical curve, points that do not belong to 95 to 105% of linear range were excluded. Recovery tests of pesticides in different water samples (tap water and river water) were between 76.2 and 107% and this evaluation was used to demonstrate the reliability of the method. For all pesticides the method showed the limits of detection (LOD) in a range between 0.05 and 0.38 μg L− 1 and the limit of quantification (LOQ) between 0.15 and 1.1 μg L− 1. All these parameters demonstrate high sensitivity of the developed method and the capability for detecting and quantifying of low levels of pesticides in water samples.  相似文献   

16.
A new analytical method for the determination of four hydroxylated benzophenone UV filters (i.e. 2-hydroxy-4-methoxybenzophenone (HMB), 2,4-dihydroxybenzophenone (DHB), 2,2′-dihydroxy-4-methoxybenzophenone (DHMB) and 2,3,4-trihydroxybenzophenone (THB)) in sea water samples is presented. The method is based on dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS) determination. The variables involved in the DLLME process were studied. Under optimized conditions, 1000 μL of acetone (disperser solvent) containing 60 μL of chloroform (extraction solvent) were injected into 5 mL of aqueous sample adjusted to pH 4 and containing 10% NaCl. Before injecting into the GC–MS system, the DLLME extracts were evaporated under an air stream and then reconstituted with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA), thus allowing the target analytes to be converted into their trimethylsilyl derivatives. The best conditions for the derivatization reaction were 75 °C and 30 min. High enrichment factors for all the target analytes (ranging from 58 to 64) and good repeatability (RSD around 6%) were obtained. The limits of detection were in the range of 32–50 ng L−1, depending on the analyte. The recoveries obtained by using the proposed DLLME–GC–MS method evidenced the presence of matrix effects for some of the target analytes, and thereby the standard addition calibration method was employed. Finally, the validated method was applied to the analysis of sea water samples.  相似文献   

17.
A novel method, termed ionic liquid cold-induced aggregation dispersive liquid–liquid microextraction (IL-CIA-DLLME), combined with high-performance liquid chromatography (HPLC) was developed for the determination of three phthalate esters in water samples. Several important parameters influencing the IL-CIA-DLLME extraction efficiency, such as the type of extraction and disperser solvent, the volume of extraction and disperser solvent, temperature, extraction time and salt effect, were investigated. Under optimal extraction conditions, the enrichment factors and extraction recoveries ranged from 174 to 212 and 69.9 to 84.8%, respectively. Excellent linearity with coefficients of correlation from 0.9968 to 0.9994 was observed in the concentration range of 2–100 ng mL−1. The repeatability of the proposed method expressed as relative standard deviations ranged from 2.2 to 3.7% (n = 5). Limits of detection were between 0.68 and 1.36 ng mL−1. Good relative recoveries for phthalate esters in tap, bottled mineral and river water samples were obtained in the ranges of 91.5–98.1%, 92.4–99.2% and 90.1–96.8%, respectively. Thus, the proposed method has excellent potential for the determination of phthalate esters in the environmental field.  相似文献   

18.
A novel microextraction technique, air-assisted liquid–liquid microextraction (AALLME), which is a new version of dispersive liquid–liquid microextraction (DLLME) method has been developed for extraction and preconcentration of phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DNBP), and di-2-ethylhexyl phthalate (DEHP), from aqueous samples prior to gas chromatography–flame ionization detection (GC–FID) analysis. In this method, much less volume of an organic solvent is used as extraction solvent in the absence of a disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by GC–FID. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12–1.15 and 0.85–4 ng mL−1, respectively. Enrichment factors (EFs) and extraction recoveries (ERs) were in the ranges of 889–1022 and 89–102%, respectively. The relative standard deviations (RSDs) for the extraction of 100 ng mL−1 and 500 ng mL−1 of each phthalate ester were less than 4% for intra-day (n = 6) and inter-days (n = 4) precision. Finally some aqueous samples were successfully analyzed using the proposed method and three analytes, DIBP, DNBP and DEHP, were determined in them at ng mL−1 level.  相似文献   

19.
Dispersive liquid–liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid–liquid microextraction (DLLME) technique with few solvent requirements (13 μL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885–2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1–9.7% for reservoir water; 5.6–8.9% for river water) and high sensitivity (limits of detection: 0.8–2.5 ng/L for reservoir water; 0.4–1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.  相似文献   

20.
A simple and efficient ultrasound-assisted dispersive liquid–liquid microextraction (UA-DLLME) method has been developed for the determination of seven benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, lormetazepam and tetrazepam) in human plasma samples. Chloroform and methanol were used as extractant and disperser solvents, respectively. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, pH, ultrasonic time and ionic strength) was carefully evaluated and optimized, using an asymmetric screening design 3242//16. Analysis of extracts was performed by ultra-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). Under the optimum conditions, two reversed-phases, Shield RP18 and C18 columns were successfully tested, obtaining good linearity in a range of 0.01–5 μg mL−1, with correlation coefficients r > 0.996. Quantification limits ranged between 4.3–13.2 ng mL−1 and 4.0–14.8 ng mL−1, were obtained for C18 and Shield RP18 columns, respectively. The optimized method exhibited a good precision level, with relative standard deviation values lower than 8%. The recoveries studied at two spiked levels, ranged from 71 to 102% for all considered compounds. The proposed method was successfully applied to the analysis of seven benzodiazepines in real human plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号