首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi‐pesticide residue determination method based on a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method using multiwalled carbon nanotubes as reversed‐dispersive solid‐phase extraction material was validated in 37 representative pesticides in tobacco. Determination was performed using liquid chromatography with tandem mass spectrometry in multiple reaction monitoring mode. Three major types of tobacco leaf samples, namely, flue‐cured, burley, and oriental tobacco were studied and compared. Three factors (extraction time, external diameter, and amount of extraction material used) that could affect the performance of multi‐walled carbon nanotubes were investigated. Optimization of sample preparation and determination allowed recoveries between 70.8 and 114.8% for all 37 pesticides with < 20.0% relative standard deviations at three spiking levels of 20, 50, and 200 μg/kg. The limits of quantification and limits of detection for the 37 pesticides ranged within 0.46–28.57 and 0.14–8.57 μg/kg at a signal‐to‐noise ratio of 10 and 3, respectively.  相似文献   

2.
An ultrasensitive method for the simultaneous analysis of pesticides residues in tobacco was developed with online size exclusion chromatography with gas chromatography and tandem mass spectrometry. Tobacco samples were extracted with the solvent mixture of cyclohexane and acetone (7:3, v/v) and centrifuged. Then, the supernatant liquors were injected directly into the online size exclusion chromatography with gas chromatography and tandem mass spectrometry without any other purification procedures after being filtered with a 0.22 μm organic phase filter. The matrix interferences were effectively removed and recoveries of most pesticides were in the range of 72–121%. Especially, for chlorothalonil, the analysis efficiency of this method was much more favorable than that of the general method, in which dispersive solid‐phase extraction was used as an additional purified procedure. In addition, the limits of quantitation of this method were from 1 to 50 μg/kg. Therefore, a rapid, cost‐effective, labor‐saving method was proposed in the present work, which was suitable for the analysis of 41 pesticide residues in tobacco.  相似文献   

3.
A novel procedure is put forward based on the combination of the well‐established matrix solid‐phase dispersion and the magnetic and sorption properties of magnetic octadecyl in the presence of n‐octanol and was employed in a proof‐of‐concept sample preparation and determination of several classes of pesticide residues in carrots. The procedure does not require the transfer of blend to cartridge and subsequent packing, nor any co‐sorbent for extract clean up. The hydrophobic magnetic nanoparticles utilized as a sorbent, can be retrieved by n‐octanol under the application of a magnetic field due to hydrophobic interactions. Elution of pesticide residues is then carried out with an organic solvent. A total of 26 pesticides were included in this procedure and the target compounds were analyzed using gas chromatography with mass spectrometry in the selective ion monitoring mode. The average extraction recoveries obtained from carrot samples fortified at three different concentrations (20, 50, and 500 μg/kg) were 77–107%. The estimated limits of quantitation for most target analytes were in the low μg/kg level. The study demonstrates that the proposed extraction procedure is simple and effective, avoiding a clean‐up step for the sample preparation of vegetable.  相似文献   

4.
A sensitive and robust multiresidue method for the simultaneous analysis of 114 pesticides in tobacco was developed based on solid‐phase extraction coupled with gas chromatography and tandem mass spectrometry. In this strategy, tobacco samples were extracted with acetonitrile and cleaned up with a multilayer solid‐phase extraction cartridge Cleanert TPT using acetonitrile/toluene (3:1) as the elution solvent. Two internal standards of different polarity were used to meet simultaneous pesticides quantification demands in the tobacco matrix. Satisfactory linearity in the range of 10–500 ng/mL was obtained for all 114 pesticides with linear regression coefficients higher than 0.994. The limit of detection and limit of quantification values were 0.02–5.27 and 0.06–17.6 ng/g, respectively. For most of the pesticides, acceptable recoveries in the range of 70–120% and repeatabilities (relative standard deviation) of <11% were achieved at spiking levels of 20, 100, and 400 ng/g. Compared with the reported multiresidue analytical method, the proposed method provided a cleaner test solution with smaller amounts of pigments, fatty acids as well as other undesirable interferences. The development and validation of the high sensitivity, high selectivity, easy automation, and high‐throughput analytical method meant that it could be successfully used for the determination of pesticides in tobacco samples.  相似文献   

5.
A gradient clean‐up method for the quantification of five kinds of banned drugs (two hormones, two sedatives, and one chloramphenicol) in milk powder was developed. We used the combination of solid‐phase extraction purification with gas chromatography and mass spectrometry. Milk powder was initially hydrolyzed by β‐glucuronidase/arylsulfatase, and then the hydrolyzed solution was concentrated and purified using a C8 and cation resin solid‐phase extraction column. To isolate hormones and chloramphenicol drugs, products from the previous step were diluted with methanol and further purified using a silica and diatomite solid‐phase extraction column. After derivatization, the drugs were analyzed by gas chromatography with mass spectrometry, and the hydrolyzed solution was diluted with 5% ammoniated methanol to purify sedatives before gas chromatography with mass spectrometry analysis. Results showed that after adding the banned drugs at concentrations of 0.3–10.0 μg/kg, the average recovery range was 78.2–97.3% with relative standard deviations of 5.3–12.5%. The limit of quantification of the banned drugs (S/N ≥ 10) was 0.3–5.0 μg/kg, whereas the limit of detection (S/N ≥ 3) was 0.1–2.0 μg/kg. The solid‐phase extraction gradient purification system was simple, rapid, and accurate, and could satisfy the detection requirements of hormone, sedatives, and chloramphenicol drugs when used together with gas chromatography and mass spectrometry.  相似文献   

6.
A new facile, rapid, inexpensive, and sensitive method for the analysis of six trace trichlorophenols in seawater samples was developed by magnetic micro‐solid‐phase extraction coupled to liquid chromatography with tandem mass spectrometry. Core–shell covalently functionalized ferroferric oxide coated with aminated silicon dioxide and decorated with multiwalled carbon nanotubes was applied as an adsorbent to perform the extraction process. The effect of factors including solution pH, contact time, adsorbent amount, and ionic strength were investigated in detail. The obtained results revealed that the proposed adsorbent was a highly effective and low‐cost magnetic micro‐solid‐phase extraction material for the enrichment of 2,3,4‐trichlorophenol, 2,3,5‐trichlorophenol, 2,3,6‐trichlorophenol, 2,4,5‐trichlorophenol, 2,4,6‐trichlorophenol, and 3,4,5‐trichlorophenol from seawater. Under the optimized conditions, the recoveries ranged from 88.0 to 99.5% at the three spiking levels, the limits of detection and the limits of quantification were 0.002 and 0.007 μg/L for the six trichlorophenols, respectively. The intra‐ and interday relative standard deviations were 2.0–6.7 and 4.5–8.9%, respectively. The calibration curves showed a good linearity in the range of 0.02–5.0 μg/L. The routine run analyses showed that the developed method was fast, simple, accurate, solvent‐saving and high resolution, and it was suitable for the determination of trace trichlorophenols in seawater.  相似文献   

7.
An analytical method based on dispersive solid‐phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass–mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4‐ to 48.7‐fold (theoretical enrichment factor was 50‐fold). The detection limits of pesticides were 0.01~0.77 μg/kg. The linear range was 0.005–0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high‐performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site.  相似文献   

8.
Detecting pesticide residues in human serum is a challenging process. In this study we developed and validated a method for the extraction and recovery of residues of multiple classes of pesticides from serum using one reagent. Salt‐assisted acetonitrile extraction and high‐performance liquid chromatography with quadrupole time of flight tandem mass spectrometry were used to quantitate 34 pesticides classified in nine groups of chemicals in human serum samples, which are frequently detected in food. The recoveries for 33 of analyzed pesticides ranged from 86 to 112% with relative standard deviations below 15%. The limits of quantitation and linearity of 31 of the pesticides were 1 µg/L and >0.990, respectively. The lower limit of quantitation has been reported in the literature particularly for multi‐classes pesticide mixtures in human serum. The salt–acetonitrile reagent was allowed to achieve good recoveries and detection limits, which could be attributed to salt altering the solvent polarity, preferentially collecting the organic phase in the solution, and promoting the extraction. The developed method was applied for two organophosphate pesticide metabolites, diethylphosphate and 3,5,6‐trichloro‐2‐pyridinol, in serum from rats that were fed a nonlethal quantity of chlorpyrifos. The concentrations of these two were 252.18 ± 15.47 and 0.63 ± 0.23 µg/L, respectively.  相似文献   

9.
A simple and rapid method was developed for the simultaneous analysis of nine different pesticides in water samples by gas chromatography with mass spectrometry. A number of parameters that may affect the recovery of pesticides, such as the type of solid‐phase extraction cartridge, eluting solvent in single or combination and their volumes, and water pH value were investigated. It showed that three solid‐phase extraction cartridges (Strata‐X, Oasis HLB, and ENVI‐18) produced the greatest recovery while ethyl acetate/dichloromethane/acetone (45:10:45, 12 mL) followed by dichloromethane (6 mL) was efficient in eluting target pesticides from solid‐phase extraction cartridges. Different water pH values (4–9) did not show a significant effect on the pesticides recovery. The optimized method was verified by performing spiking experiments with a series of concentrations (0.002–10 μg/L) in waters, with good linearity, recovery, and reproducibility for most compounds. The limit of detection and limit of quantification of this optimized method were 0.01–2.01 and 0.02–6.71 ng/L, respectively, much lower than the European Union environmental quality standard for the pesticides (0.1 μg/L) in waters. The proposed method was further validated by participation in an interlaboratory trial. It was then subsequently applied to river waters from north‐east Scotland, UK, for the determination of the target pesticides.  相似文献   

10.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

11.
In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant‐derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound‐ and microwave‐assisted extraction, solid‐phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid–liquid extraction, liquid‐phase microextraction, matrix solid‐phase dispersion, and gas chromatography (one‐ and two‐dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low‐molecular‐weight aromatic and aliphatic constituents that are particularly important for public health.  相似文献   

12.
An orthogonal two‐dimensional solid‐phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed‐phase liquid chromatography material (C18) and a weak cation‐exchange material (TGA) were integrated in a single solid‐phase extraction cartridge. The feasibility of two‐dimensional clean‐up procedure that experienced two‐step adsorption, two‐step rinsing, and two‐step elution was systematically investigated. Based on the orthogonality of reversed‐phase and weak cation‐exchange procedures, the two‐dimensional solid‐phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed‐phase solid‐phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation‐exchange solid‐phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two‐dimensional clean‐up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk.  相似文献   

13.
Detection of pesticide residues in food samples is important for safeguarding food quality and safety. Conventional approaches for detection of pesticides in food samples typically involve labour‐intensive and time‐consuming sample pretreatment and chromatographic separation. In this study, solid phase micro‐extraction fibres were used to rapidly extract and enrich pesticides in honey, a popular agricultural product with complex matrix, and then directly coupled with electrospray ionization mass spectrometry for qualitative and quantitative analysis. Three pesticides, ie, atrazine, benalaxyl, and pirimicarb, were investigated using the technique and their analytical performances were evaluated. The limits of detection and limits of quantitation of all the three pesticides could fulfil the cut‐off values of the international standard. Linear calibration curves were constructed with good R2 coefficients, and the accuracy and precision were in acceptable ranges for all the pesticides. The analysis time is much reduced, with only minimum sample preparation and no chromatographic separation involved. The technique is simple and easy to set up, and can be extended for analysis of other analytes and sample systems.  相似文献   

14.
In this study, an effective speed‐regulated directly suspended droplet microextraction method was developed to condense pesticide residues from teas through dispersive solid‐phase extraction prior to analysis by gas chromatography with tandem mass spectrometry. The extractant was intentionally dispersed into the sample solution in the form of globules through high‐speed agitation. This procedure increases the contact area between the binary phases and shortens the distribution equilibrium time. The fine globules reassembled by decelerating stirring speed, the extractant could be taken out for gas chromatography with tandem mass spectrometry. Recovery studies were performed under optimized extraction conditions by using matrix blanks fortified with pesticides at three concentrations (10, 50, and 100 µg/kg). Over 87% of the recoveries for the analytes in four tea matrices were acceptable given their recovery ranges of 70–120% and relative standard deviations of ≤20%. The limits of quantification of most pesticides were lower than 10 µg/kg and thus satisfied the requirements for maximum residue levels prescribed by the European Community. A total of 38 tea samples from local markets were analyzed by using the proposed method. Results showed that chlorpyrifos was the most frequently detected pesticide in teas. The method is a potential choice for the routine monitoring of pesticide residues in complex matrices.  相似文献   

15.
In this study, organic aerogels were synthesized by the sol–gel polycondensation of mixed cresol with formaldehyde in a slightly basic aqueous solution. Carbon aerogels and xerogels are generated by pyrolysis of organic aerogels. The novel sol–gel‐based micro‐solid‐phase extraction sorbent, resorcinol–formaldehyde xerogel, was employed for preconcentration of some selected herbicides. Three herbicides of the aryloxyphenoxypropionate group, clodinafop‐propargyl, haloxyfop‐etotyl, and fenoxaprop‐P‐ethyl, were extracted from aqueous samples by micro‐solid‐phase extraction and subsequently determined by gas chromatography with mass spectrometry. The effect of different parameters influencing the extraction efficiency of these herbicides including sample flow rate, sample volume, and extraction time were investigated and optimized. Under optimum conditions, linear calibration curves in the range of 0.10–500 ng/L with R2 > 0.99 were obtained. The relative standard deviation at 50 μg/L concentration level was lower than 10% (n = 5) and detection limits were between 0.05 and 0.20 μg/L. The proposed method was successfully applied to the sampling and extraction of herbicides from Zayanderood and paddy water samples.  相似文献   

16.
A novel infrared‐assisted extraction coupled to headspace solid‐phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane‐divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water‐bath heating and nonheating extraction methods, the extraction efficiency of infrared‐assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above‐mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost‐effective, and highly efficient method, the infrared‐assisted extraction coupled to headspace solid‐phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics.  相似文献   

17.
Currently, pharmacokinetic–pharmacodynamic studies of sedatives and analgesics are performed in neonates and children to find suitable dose regimens. As a result, sensitive assays using only small volumes of blood are necessary to determine drug and metabolite concentrations. We developed an ultra‐performance liquid chromatographic method with tandem mass spectrometry detection for quantification of midazolam, 1‐hydroxymidazolam, hydroxymidazolamglucuronide, morphine, morphine‐3‐glucuronide and morphine‐6‐glucuronide in 100 μL of plasma. Cleanup consisted of 96 wells micro‐solid phase extraction, before reversed‐phase chromatographic separation (ultra‐performance liquid chromatography) and selective detection using electrospray ionization tandem mass spectrometry. Separate solid‐phase extraction methods were necessary to quantify morphine, midazolam and their metabolites because of each group's physicochemical properties. Standard curves were linear over a large dynamic range with adequate limits of quantitation. Intra‐ and interrun accuracy and precision were within 85–115% (of nominal concentration using a fresh calibration curve) and 15% (coefficient of variation, CV) respectively. Recoveries were >80% for all analytes, with interbatch CVs (as a measure of matrix effects) of less than 15% over six batches of plasma. Stability in plasma and extracts was sufficient, allowing large autosampler loads. Runtime was 3.00 min per sample for each method. The combination of 96‐well micro‐SPE and UPLC‐MS/MS allows reliable quantification of morphine, midazolam and their major metabolites in 100 μL of plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   

19.
A high‐throughput micro‐solid‐phase extraction device based on a 96‐well plate was constructed and applied to the determination of pesticide residues in various apple samples. Butyl methacrylate and ethylene glycol dimethacrylate were copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless‐steel meshes of 96‐micro‐solid‐phase extraction device and used as an extracting unit. Before the micro‐solid‐phase extraction, microwave‐assisted extraction was employed to facilitate the transfer of the pesticide residues from the apple matrix to liquid media. Then, 1 mL of the aquatic samples was transferred into the 96‐well plate and the 96‐micro‐solid‐phase extraction device was applied for the extraction of the selected pesticides. Influential parameters, such as sorbent‐to‐sorbent reproducibility, microwave‐assisted extraction time, ionic strength and micro‐solid‐phase extraction time, were optimized. The limits of quantitation were below 120 μg/kg, which are lower than the maximum residue limits. The developed method was successfully implemented for the extraction and determination of the selected pesticides from 20 different apple samples gathered from local markets. Phosalone was identified and quantified at the concentration level of 147 (±16.4) μg/kg in one of the samples.  相似文献   

20.
Although jujube is a minor crop and very few pesticides are registered on it, the application of pesticides during the growth stage of jujube is inevitable to control the pests or diseases. This situation has led to pesticide misuse. A modified quick, easy, cheap, effective, rugged, and safe method using a novel sorbent, multiwalled carbon nanotubes, as a dispersive solid‐phase extraction sorbent combined with gas chromatography with mass spectrometry, was developed for the determination of 16 pesticides in jujube. Under the optimized conditions, recoveries of 76.7–112.4% were obtained for the target analytes at three spiked concentration levels. The relative standard deviations ranged from 1.2 to 12.3%. Limits of detection and limits of quantification for 16 pesticides ranged from 1 to 10 and 3 to 30 μg/kg, respectively. The residues of chlorpyrifos, hexaconazole, tebuconazole, and cyhalothrin were detected from samples obtained from the market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号