首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed-phase TiO2 nanopowders with different ratios of anatase and rutile have been successfully synthesized using atmospheric pressure plasma jet driven by dual-frequency power sources. The crystal structures of the TiO2 nanopowders were characterized by X-ray diffraction, SAED, HRTEM, and Raman shift spectroscopy. These results indicated that samples possessed anatase and rutile structure, in addition, the crystallinity of the TiO2 nanopowders increased and the chlorine contamination decreased with discharge RF power increasing. The photocatalytic activity of the TiO2 nanopowders was evaluated by decomposition methylene blue solution. The TiO2 nanopowders which were produced at the discharge RF power of 110 W had the highest photocatalytic activity. Optical emission spectroscopy (OES) was used to detect various excited species in the plasma jet. The results indicate that the various RF power significantly changes the intensities of emission lines (Ar, Ar+, Ti, Ti+, Ti2+, Ti3+ and O), which results in the TiO2 nanopowders a mixture of anatase and rutile phases. The nonequilibrium chemical composition could be formed in one step without anneal. It may have potential applications for synthesizing nanosized particles of high crystallinity by reactive nonthermal plasma processing.  相似文献   

2.
A comparative study of TiO2 powders prepared by sol–gel methods is presented. Titanium tetraisopropoxide was used as the precursor for the sol–gel processes. The effects of the annealing treatment on phase, crystallite size, porosity and photodegradation of dyes (methyl orange and methylene blue) were studied. The phase structure, microstructure and surface properties of the films were characterized by using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The X-ray diffraction was used for crystal phase identification, for the accurate estimation of the anatase–rutile ratio and for the crystallite size evaluation of each polymorph in the samples. It was found that the only TiO2 anatase phase of the synthesized TiO2 develops below 500 °C, between 600 and 800 °C the anatase coexist with rutile and above 800 °C only the rutile phase was found in the samples. Attention has been paid not only to crystal structures, but also to the porosity, the particle size and the photocatalytic properties. However, the annealing temperature was found to have significant influence on the photocatalytic properties. Different TiO2 doctor blade thin films were obtained mixing the sol gel powder (100% anatase) and TiO2 Aldrich with TiO2 Degussa P25. The surfactant (Triton X100 or sodium dodecyl sulfate) affects the packing density of the particles during deposition and the photocatalytic degradation efficiency of the dyes. The photocatalytic degradation kinetics of methyl orange and methylene blue using TiO2 thin film were investigated.  相似文献   

3.
TiO2 photocatalytic powders were synthesized by a sol–gel combustion synthesis method in which urea was used as the fuel and titanyl nitrate was used as the oxidizer. Various fuel-to-oxidizer ratios were studied for their effects on the combustion phenomena and the properties of the synthesized TiO2. The fuel-to-oxidizer ratio was found to determine the maximum combustion temperature, which in turn affects the specific surface area, crystallite size, and weight fraction of anatase phase of the synthesized TiO2. The synthesized TiO2 all contain carbonaceous species and are either pure anatase or anatase–rutile mixed phase in crystalline structure. The photocatalytic activity of the TiO2 was found to correlate to a certain degree with the specific surface area, crystallite size, weight fraction of anatase phase, and visible and IR absorbances. The mixed phase TiO2 shows a higher photocatalytic activity than the pure anatase phase TiO2 when containing a small fraction (<~25 wt%) of rutile phase but a lower phoyocatalytic activity when containing a large fraction (>~25 wt%) of rutile phase. The synthesized TiO2 all show higher photocatalytic activity than Degussa P25 TiO2. The enhanced photocatalytic activity was attributed mainly to sensitization by the carbonaceous species and larger amounts of hydroxyl group adsorbed on the TiO2 surface.  相似文献   

4.
In this study, different commercially available TiO2 powders (Degussa P25, pure anatase, and rutile) were submitted to selective dissolution treatments, with H2O2/NH4OH and 10% HF, known to remove rutile and anatase from physical mixtures. The aim was to check whether a particular separation method designed to remove a specific crystalline phase influences the properties of the other phase from the mixture or not. More precisely, we have studied how the HF dissolution method designed to selectively remove the anatase affected the physicochemical and photocatalytic properties of rutile. In a similar way, the changes in the anatase properties were studied, after the H2O2/NH4OH treatment, initially used to remove rutile from the mixture. All the samples were characterized by X-ray diffraction, nitrogen adsorption–desorption, transmission electron microscopy, diffuse reflectance (DR) ultraviolet–visible, and Raman spectroscopy. The photocatalytic activity of these powders was tested in the oxidation of p-chlorophenol from water. The selective treatment methods not only dissolved the target phase but also changed some physicochemical and the photocatalytic performances of the other TiO2 crystalline phase in a considerable manner. These aspects should be taken into account in the studies regarding the synergistic effects of anatase and rutile, especially in reconstructed TiO2 photocatalysts.  相似文献   

5.
Titanium dioxide (TiO2) nanoparticles of both anatase and rutile phases were synthesized by hydrothermal treatment of microemulsions, and their photocatalytic activity for the degradation of X-GL dye was investigated. The only difference between the two methods used was that different acids were added to the microemulsions to make a direct comparison of the photocatalytic activity of the polymorphs possible. UV — Vis reflectance and XRD spectroscopic investigations of these titanium dioxides indicated that a rutile structure could be formed (PR) when hydrochloric acid was used, and anatase formed (PA) when nitric acid was used. The activity of the two polymorphs and P-25 for the photocatalytic degradation of dye in water was also examined. It was found that P-25 consisting of anatase and rutile has the highest activity, and PR consisting of rutile has the lowest. Photodegradation of X-GL in the presence of these different TiO2 particles under air-equilibrated controlled conditions led to the formation of hydrogen peroxide. The formation rate of H2O2 depended on the difference in crystalloid phase. These results indicate that the observed differences in the photocatalytic activity for the three TiO2 photocatalysts are directly related to the formation rate of H2O2.  相似文献   

6.
Nanocrystalline TiO2 powders in the anatase, rutile, and mixed phases prepared by hydrolysis of TiCl4 solution were of ultrafine size (<7.2 nm) with high specific surface areas in the range 167 to 388 m2/g. In the photocatalytic degradation of phenol as model reaction, the photocatalytic properties of TiO2 nanoparticles were evaluated by use of UV–vis absorption spectroscopy and total organic carbon (TOC) content. The synthetic mixed-phase TiO2 powder calcined at 400 °C had higher activity than pure anatase or rutile; it degraded more than 90% phenol to CO2 (evaluated by TOC) after irradiation with near UV light for 90 min at a catalyst loading of 0.4 g/L. The TOC results indicated that rutile TiO2 crystallites of particle size 7.2 nm resulted in much better photocatalytic performance than particles of larger size. This result suggested that some intermediates, not determined by UV–vis absorption spectroscopy, existed in the solution after the photocatalytic process over the rutile TiO2 photocatalysts of larger crystallite size.  相似文献   

7.
The TiO2 powders were synthesized by versatile and low cost sol–gel process using HNO3 and titanium tetra-isopropoxide (volumetric ratio of 4:1) following by the hydrolysis reaction. The powders show the two polymorphs of TiO2: 96 % anatase and 4 % brookite, due to acidic condition (pH = 3). Thin films of titanium oxide were obtained by dip-coating, using the sol–gel of titanium oxide mixed with commercial Degussa P25 into a weight ratio 1:1 or 1:1.5, to enhance the synergistic effect of anatase/rutile ratio aiming at increasing the efficiency of the TiO2 photocatalyst in dyes degradation. The thin film surface (charge and morphology) was controlled by polymer (poly-ethylene glycol) and surfactant (Sodium dodecyl sulphate, Triton X100) addition. The titanium oxide was characterized by particle size analyzer, contact angle measurements, X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The photocatalytic properties of powders and coatings were evaluated based on the degradation efficiency of two reference dyes (methyl orange and methylene blue). The results outline that poly(ethylene glycol) and films morphologies are the most influential factors that affecting the photocatalytic activity.  相似文献   

8.
The photocatalytic activity of TiO2 nanofibers immobilized on quartz substrates was investigated by evaluating the decomposition of organic pollutants. TiO2 nanofibers were synthesized by electrospinning the Ti-precursor/polymer mixture solution, followed by hot-pressing for enhancing the adhesion of TiO2-nanofiber films to the substrates. TiO2 started to crystalize in the anatase form at 500 °C and reached the optimal photocatalytic anatase/rutile phase ratio of 70:30 at a calcination temperature of 600 °C. The TiO2-nanofiber film was demonstrated to be an efficient photocatalyst by ranitidine decomposition under UV illumination and was proven to have a comparable photocatalytic activity with the well-known Degussa P25 nanoparticulate photocatalyst and excellent recyclability during 10 cycles of photocatalytic operation, indicating no loss of TiO2 nanofibers during photocatalytic operations.  相似文献   

9.
The nanosized titania and TiO2/SiO2 particles were prepared by the microwave-hydrothermal method. The effect of physical properties TTIP/TEOS ratio and calcination temperature has been investigated. The major phase of the pure TiO2 particle is of the anatase structure, and a rutile peak was observed above 800°C. In TiO2/SiO2 particles, however, no significant rutile phase was observed, although the calcination temperature was 900°C. No peaks for the silica crystal phase were observed at either silica/titania ratio. The crystallite size of TiO2/SiO2 particles decreases as compared to pure TiO2 at high calcination temperatures. The TiO2/SiO2 particles show higher activity on the photocatalytic decomposition of orange II as compared to pure TiO2 particles.  相似文献   

10.
Size-, shape-, and phase structure-controlled synthesis of TiO2 nanocrystallites has long been one of the main themes in TiO2 research. Many synthetic techniques have been utilized in the preparation of TiO2 nanocrystals, among which hydrothermal treatment has been drawing much attention because it directly produces well-crystallized nanocrystallities of a wide range of compositions of crystal phases within a short reaction time. In this study, we carried out hydrothermal growth of rutile TiO2 rods by using aqueous titanium trichloride (TiCl3) solutions containing NaCl. Uniform ultrafine rutile TiO2 particles were obtained, and developed crystal faces were observed by TEM, SEM, XRD, and specific surface area measurements. The obtained rutile fine particles showed high levels of activity for degradation of 2-propanol and acetaldehyde under UV irradiation compared to the activity levels of anatase fine particles (ST-01) developed for environmental clean-up. The surface chemistry of the rutile TiO2 particles was also investigated. From photodeposition of Pt and PbO2, we suggest that the (1 1 0) face provides reductive sites and that the (1 1 1) face provides oxidative sites. These results indicate that the crystal faces facilitate the separation of electrons and holes, resulting in improvement of photocatalytic activity.  相似文献   

11.
Nano-sized TiO2 powders were synthesized by modified hydrolysis reaction using two-stage treatments of acid/base catalyst. Using an acidic catalyst, the primary particle size of assynthesized TiO2 was smaller than using basic catalyst, but rutile ratio and the particle size were increased after heat treatment due to the dense packing of particles. However, in the synthesized TiO2 powder using a basic catalyst persist the anatase phase and a loosely aggregation of particle after heat treatment. It was found that the catalyst used in the first stage determines the primary particle size. However the phase, the packing density and degree of dispersion of TiO2 powder were determined by the secondly applied catalyst. Therefore, the addition sequence of catalysts is the most important key to prepare fine powders for photocatalytic use and solar cell. In this study, an acid treatment followed by a base is suggested as best route to obtaining fine size and distribution of particles and high content of anatase phase.  相似文献   

12.
Titanium dioxides (TiO2) nanoparticles with one-dimensional (1D) geometry, nanorods and nanostripes, were used as photocatalysts to photodegrade Rhodamine B (RhB) under ultraviolet (UV) and visible irradiation. The nanorods catalyst exhibited very interesting photocatalytic properties: under the UV irradiation its catalytic activity was slightly below that of the well-known TiO2 catalyst P25, while under visible light it exhibited a better activity than P25.This fact indicates that the nanorods have a superior ability to utilize less energetic but more abundant visible light. Moreover, the 1D TiO2 nanoparticles can be readily separated from aqueous suspensions by sedimentation after the reaction. With these advantages the 1D TiO2 catalysts have a great potential for environmental applications. Various analytical techniques were employed to characterize TiO2 catalysts and monitor the photocatalytic reaction. It was found that the catalytic performance of the catalysts is greatly dependent on their structures: The superior activity of P25 (consists of anatase and rutile nanocrystals) under UV light results probably from the interfacial interaction between anatase and rutile nanocrystals in this solid, which do not exist in the nanorods (only anatase). The titanate nanostripes (titanate) can absorb UV photons with shorter wavelength only.  相似文献   

13.
Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye from liquid phase was done using mixed-phase nanocrystalline TiO2 for enhancement of charge separation and UV-visible-light-driven photocatalysis capabilities. The mixed-phase nanocrystalline TiO2 was characterized using various analytical techniques including XRD, TEM, UV-vis DRS and PL to investigate its phase composition and structure, nanocrystalline size distribution, band gap energy, and photoluminescence properties. The photocatalytic discoloration efficiency of mixed-phase nanocrystalline titania was explored by monitoring the decomposition of RhB dye in an aqueous solution. The results showed that the as-prepared mixed-phase nanocrystalline TiO2 was excellent for degradation of RhB molecule, and the combination of crystal phase of anatase and rutile has great effect on decomposition of RhB. The kinetic studies demonstrate that the photocatalytic oxidation reaction followed a pseudo-first-order expression due to the evidence of linear correlation between ln(c/c 0) vs. reaction time t. Moreover, the aqueous RhB dye decomposition over the as-prepared mixed-phase nanocrystalline TiO2 catalyst is controlled by RhB pre-adsorption.  相似文献   

14.
Photocatalytic reactions are governed by photogenerated charge carriers upon band gap excitation. Therefore, for better understanding of the mechanism, the dynamics of photocarriers should be studied. One of the attractive materials is TiO2, which has been extensively investigated in the field of photocatalysis. This review article summarizes our recent works of time-resolved visible to mid-IR absorption measurements to elucidate the difference of anatase, rutile, and brookite TiO2 powders. The distinctive photocatalytic activities of these polymorphs are determined by the electron-trapping processes at the defects on powders. Powders are rich in defects and these defects capture photogenerated electrons. The depth of the trap is crystal phase dependent, and they are estimated to be < 0.1 eV, ∼0.4 eV and ∼0.9 eV for anatase, brookite, and rutile, respectively. Electron trapping reduces probability to meet with holes and then elongate the lifetime of holes. Therefore, it works negatively for the reaction of electrons but positively works for the reaction of holes. In the steady-state reactions, both electrons and holes should be consumed. Hence, the balance between the positive and negative effects of defects determines the distinctive photocatalytic activities of anatase, rutile, and brookite TiO2 powders.  相似文献   

15.
Nanophase silica-titania particles were prepared by two different synthetic routes, namely, sol–gel and hydrothermal processing. The crystallinity and crystallographic phases, particle size and surface area of the materials were controlled by varying the calcination temperature, and/or the ratio of Si to Ti. It was determined by XRD that the crystallite sizes of SiO2-TiO2 prepared by sol–gel and hydrothermal processing decreased from 11 to 6 nm and 12 to 9 nm, respectively, as the mole fraction of silica was increased from 0.1 to 0.4. It is proposed that the presence of the amorphous silica suppresses the growth of anatase TiO2 grains and their phase transformation to rutile. The photocatalytic decomposition rate of 1,4-dichlorobenzene (DCB) in aqueous solution with the sol–gel derived SiO2-TiO2 powder prepared at 750 °C was about 10 ± 5% higher than that observed with Degussa P25, whereas the SiO2-TiO2 samples prepared by hydrothermal processing at 250 °C showed a slightly lower decomposition rate than P25.  相似文献   

16.
TiO2 photocatalysts were prepared by a multi-gelation method and the effect of the changes in the pH during the pH swing times, i.e., by a controlled pH swing, on the morphology of the TiO2 particles was investigated. The photocatalytic properties of the TiO2 catalysts prepared by controlled pH swing were compared with TiO2 particles prepared without adjusting the pH during the swing times. The photocatalytic degradation reaction of these TiO2 catalysts was investigated by comparing their effectiveness in 2-propanol oxidation. The experimental results showed that the TiO2 photocatalysts prepared without adjusting the pH performed better in controlling the important parameters of the catalysts such as particle size, surface area, anatase/rutile phase ratio and pore size, as well as pore volume than the TiO2 photocatalysts prepared by a controlled pH swing method. Deceased.  相似文献   

17.
TiO2 nanoparticles were produced in the diffusion flame reactor, and the size and anatase/rutile content of TiO2 were examined by a Particle Size Analyzer and X-ray diffraction, respectively. Increase in fuel/O2 ratio, initial concentration of TiCl4 or total gas flow rate causes the larger particle size and the higher rutile composition. The photocatalytic activities of TiO2 powders were tested on the decompositions of phenol and toluene in the aqueous solution under UV irradiation. The degradation rate increases as the TiO2 particle size decreases and as the initial concentration of phenol or toluene increases. The photodegradation rate of phenol by TiO2 particles is higher than that of toluene at the same process conditions. The computational method was used to simulate the gas temperature, velocity and species mass fractions inside the diffusion flame reactor during synthesis of TiO2 nanoparticles. The measured and simulated temperature results were compared on several positions above the burner and both of them show good agreements. The typical contours of TiCl4, TiO2 mass fractions and gas velocities in flame reactor were presented.  相似文献   

18.
In this work core/shell composite polymer/TiO2 nanofibers and from those TiO2 nanotubes were prepared. First, poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) fibers were synthetized by electrospinning. They were covered with a 100 nm thick amorphous TiO2 layer by atomic layer deposition at 50 °C. Later the polymer core was removed by two different methods: dissolution and annealing. In the case of dissolution in water, the as-prepared TiO2 nanotubes remained amorphous, while when annealing was used to remove the polymers, the TiO2 crystallized in anatase form. Due to this, the properties of amorphous and crystalline TiO2 nanotubes with exactly the same structure and morphology could be compared. The samples were investigated by SEM-EDX, ATR-IR, UV-Vis, XRD and TG/DTA-MS. Finally, the photocatalytic properties of the TiO2 nanotubes were studied by decomposing methyl-orange dye under UV light. According to the results, crystalline anatase TiO2 nanotubes reached the photocatalytic performance of P25, while amorphous TiO2 nanotubes had observable photocatalytic activity.  相似文献   

19.
The photocatalytic characteristics of nanostructured TiO2 ultrafine powder with rutile phase produced using the homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 TiO2 powder by flame hydrolysis. The TiO2 powder by the HPPLT showed much higher photoactivity in the removal rate, showing lower pH values in the solution than the P-25 powder when eliminating metal ions such as Pb and Cu from the aqueous metal-EDTA solutions. This can be inferred as the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of an electron-hole pair formed on the surface of the TiO2 particles under UV light irradiation. Also, in the view of the TiO2 particle morphology, compared to the well-dispersed spherical P-25 particles, the agglomerated TiO2 secondary particles by the HPPLT consist of acicular typed primary particles with a thickness in the range of 3–7 nm and the primary particles radialize in all directions, which would be more effective to photocatalytic reactions without the large electron-hole recombination on the surface of the TiO2 particle under UV light irradiation. It can be, therefore, thought that the higher photoactivity of the rutile TiO2 powder by the HPPLT in the aqueous solutions results mainly from having a larger surface area by the acicular shaped primary particles with very thin thickness and radialization in all directions.  相似文献   

20.
以浸渍在不同晶相TiO2 (金红石型(R)、锐钛矿型(A)和P25型(P))上的锰基催化剂为对象,研究了TiO2晶相对MnOx/TiO2催化剂催化NO氧化活性的影响。 结果表明,MnOx/TiO2(P)催化剂活性最高,NO转化率在300℃及GHSV = 20000 h-1条件下可达83%。 各催化剂活性顺序为MnOx/TiO2(P)>MnOx/TiO2(A)>MnOx/TiO2(R)。采用X射线粉末衍射、场发射扫描电子显微镜、X射线光电子能谱、H2程序升温还原和O2程序升温脱附等手段研究了TiO2晶相影响MnOx/TiO2催化剂催化活性的作用机理。结果表明,相比于A和R型TiO2,P型TiO2能够增加MnOx在其表面的分散度并抑制催化剂颗粒的团聚和粘连,且更有利于Mn2O3的生成,而后者催化NO氧化活性比其它MnOx更高;此外,P型TiO2可以增加MnOx尤其是Mn2O3的还原性,并可促进O2-从M3+-O键的脱附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号