首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100°C. When calcination temperatures are below 600°C, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700°C, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100°C, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400°C, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact that the prepared TiO2 photocatalyst has higher specific surface areas, smaller crystallite size and bimodal pore size distribution.  相似文献   

2.
Titania thin films were synthesized by sol–gel dip-coating method with metallic Ni nanoparticles synthesized separately from an organometallic precursor Ni(COD)2 (COD = cycloocta-1,5-diene) in presence of 1,3-diaminopropane as a stabilizer. Titania was obtained from a titanium isopropoxide precursor solution in presence of acetic acid. A Ni/TiO2 sol system was used to coat glass substrate spheres (6, 4 and 3 mm diameter sizes), and further heat treatment at 400 °C was carried out to promote the crystallization of titania. XRD analysis of the TiO2 films revealed the crystallization of the anatase phase. Transmission Electron Microscopy (TEM) and High Resolution TEM studies of Ni nanoparticles before mixing with the TiO2 solution revealed the formation of Ni nanostructures with an average size of 5–10 nm. High-angle annular dark-field images of the Ni/TiO2 system revealed well-dispersed Ni nanoparticles supported on TiO2 and confirmed by AFM analysis. The photocatalytic activity of the Ni/TiO2 films was evaluated in hydrogen evolution from the decomposition of ethanol using a mercury lamp for UV light irradiation. Titania films in presence of Ni nanoparticles show higher efficiency in their photocatalytic properties in comparison with TiO2.  相似文献   

3.
Nanocrystalline TiO2 powders in the anatase, rutile, and mixed phases prepared by hydrolysis of TiCl4 solution were of ultrafine size (<7.2 nm) with high specific surface areas in the range 167 to 388 m2/g. In the photocatalytic degradation of phenol as model reaction, the photocatalytic properties of TiO2 nanoparticles were evaluated by use of UV–vis absorption spectroscopy and total organic carbon (TOC) content. The synthetic mixed-phase TiO2 powder calcined at 400 °C had higher activity than pure anatase or rutile; it degraded more than 90% phenol to CO2 (evaluated by TOC) after irradiation with near UV light for 90 min at a catalyst loading of 0.4 g/L. The TOC results indicated that rutile TiO2 crystallites of particle size 7.2 nm resulted in much better photocatalytic performance than particles of larger size. This result suggested that some intermediates, not determined by UV–vis absorption spectroscopy, existed in the solution after the photocatalytic process over the rutile TiO2 photocatalysts of larger crystallite size.  相似文献   

4.
SiO2/TiO2 hybrid nanofibers were prepared by electrospinning and applied for photocatalytic degradation of methylene blue (MB). The phase structure, specific surface area, and surface morphologies of the SiO2/TiO2 hybrid nanofibers were characterized through thermogravimetry (TG), X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), etc. XRD measurements indicated that doping of silica into TiO2 nanofibers can delay the phase transition from anatase to rutile and decrease the grain size. SEM and BET characterization proved that silica doping can remarkably enhance the porosity of the SiO2/TiO2 hybrid nanofibers. The MB adsorption capacity and photocatalytic activity of the SiO2/TiO2 hybrid nanofibers were distinguished experimentally. It was found that, although increased silica doping content could enhance the MB adsorption capacity, the intrinsic photocatalytic activity gradually dropped. The SiO2 (10 %)/TiO2 composite nanofibers exhibited the highest MB degradation rate, being superior to SiO2 (20 %)/TiO2 or pure TiO2.  相似文献   

5.
The influence of NH3-treating temperature on the visible light photocatalytic activity of N-doped P25-TiO2 as well as the relationship between the surface composition structure of TiO2 and its visible light photocatalytic activity were investigated. The results showed that N-doped P25-TiO2 treated at 600°C had the highest activity. The structure of P25-TiO2 was converted from anatase to rutile at 700°C. Moreover, no N-doping was detected at the surface of P25-TiO2. There was no simply linear relationship between the visible light photocatalytic activity and the concentration of doped nitrogen, and visible light absorption. The visible light photocatalytic activity of N-doped P25-TiO2 was mainly influenced by the synergistic action of the following factors: (i) the formation of the single-electron-trapped oxygen vacancies (denoted as Vo·); (ii) the doped nitrogen on the surface of TiO2; (iii) the anatase TiO2 structure.  相似文献   

6.
Nanosized TiO2 particles were prepared by the hydrothermal method from the amorphous powders which were precipitated in an aqueous peroxotitanate solution. The physical properties of the nanosized TiO2 particles prepared were investigated. We also examined the activity of TiO2 particles as a photocatalyst on the decomposition of orange II. The titania sol can be successfully crystallized to the anatase phase through hydrothermal aging at temperatures higher than 160°C. The particle size increases from 18 to 26 nm as the synthesis temperature increases from 140 to 200°C. Titania particles prepared at 180°C show the highest activity, and titania particles calcined at 400°C show also the highest activity on the photocatalytic decomposition of orange II.  相似文献   

7.
Crystalline anatase phase TiO2 with photocatalytic properties was obtained through a sol–gel low-temperature hydrothermal process. TiO2 samples doped with tungsten oxide were also obtained by using this synthetic approach. The photocatalytic oxidation of methylene blue in water was monitored to study the influence of the tungsten doping degree on the photocatalytic degradation performance of TiO2. The degradation rate constant was further increased by adjusting the tungsten doping degree of hydrothermal TiO2. Also, a much faster photodegradation of methylene blue was achieved using tungsten doped samples baked at 450°C. The results were compared with those obtained with Degussa P25 used as photocatalyst. The structure and optical properties of tungsten-doped TiO2 were studied by SEM, X-ray diffraction, UV–vis and DRIFT spectroscopy techniques.  相似文献   

8.
To obtain porous TiO2 film, the precursor sol was prepared by hydrolysis of Ti isopropoxide and then complexed with trehalose dihydrate. The porous TiO2 film was fabricated by the dip-coating technique on glass substrates using this solution. The TiO2 film was calcined at 500 °C. The maximum thickness of the film from one-run dip-coating was ca. 740 nm. The film was composed of nanosized particle and pores. The porosity of the TiO2 film was increased by addition of trehalose dihydrate to the sol. The porous TiO2 films were calcined at different temperatures. The effects of calcination temperature on the microstructure of the porous TiO2 film were investigated. The porous film prepared from sol containing trehalose still kept the porous structure after calcination at 950 °C. The phase transition temperature of the film from anatase to rutile was shifted from 650 to 700 °C by addition of trehalose to the sol.  相似文献   

9.
La‐TiO2 nanofibers are prepared by a sol‐gel assisted electrospinning method. The structure and morphology of La‐TiO2 nanofibers are characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis shows that the weight percentage of anatase and rutile in the 1.5 mol% La‐TiO2 nanofibers calcined at 600 °C is about 8:2, which is similar to P‐25. The XRD data of La‐TiO2 nanofibers with different La content shows that La3+ dopant has a great inhibition on TiO2 phase transformation. The photocatalytic activity of the as‐prepared La‐TiO2 nanofibers is evaluated by photocatalytic decolorization of Methylene Blue (MB) aqueous solution. The results show that the 1.5 mol% La‐TiO2 nanofibers calcined at 600 °C exhibit high photocatalytic activity, indicating that 600 °C and 1.5 mol% are the appropriate calcination temperature and optimal molar ratio of La to Ti, respectively.  相似文献   

10.
A new photocatalyst, nanoporous anatase TiO2 crystalline particles coupled by Na5PV2Mo10O40 Keggin units, TiO2-PVMo, was prepared by combination of the methods of sol-gel and hydrothermal treatment. The catalyst was characterized by X-ray diffraction (XRD), UV diffuse reflectance spectroscopy (UV-DRS), FT-IR spectroscopy, Scanning Electron Microscopy (SEM) and cyclovoltametery (CV). This photocatalyst exhibited a good photocatalytic (UV region) and sonocatalytic activity in the decomposition of different dyes in aqueous systems. The TiO2-PVMo composite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure TiO2.  相似文献   

11.
TiO2 nanofibers were prepared from tetrabutyl titanate sol precursors by using electrospun method. X-ray diffraction (XRD) and atomic force microscope (AFM) were used to characterize their crystal structure and morphology feature. The results demonstrated that TiO2 nanofibers possessed anatase phase and the average diameter of TiO2 nanofibers was about 150 nm. The photocatalytic property of TiO2 nanofibers was evaluated for the photodecomposition of methyl orange solution. And TiO2 nanofibers exhibited high photocatalytic activities with transfer efficiency about 100% after 20 min.  相似文献   

12.
B-doped TiO2 nanotubes (B/TiO2 NTs) were prepared by the combination of sol–gel process with hydrothermal treatment. The prepared catalysts were characterized by XRD, TEM and XPS. The photocatalytic activity of B/TiO2 NTs was evaluated through the photodegradation of aqueous methyl orange. The results demonstrated that the 1.5% B/TiO2 NTs calcined at 300 °C possessed the best photocatalytic activity. Compared with pure TiO2 nanotubes, the doping with B significantly enhanced the photocatalytic efficiency.  相似文献   

13.
Electrochromic titanium oxide (TiO2) films were deposited on ITO/glass substrates by chemical solution deposition (CSD). The stock solutions were spin-coated onto substrates and then heated at various temperatures (200–500 °C) in various oxygen concentrations (0–80%) for 10 min. The effects of the processing parameters on the electrochromic properties of TiO2 films were investigated. X-ray diffraction measurements demonstrated that the amorphous TiO2 films were crystallized to form anatase films above 400 °C. The electrochromic properties and transmittance of TiO2 films were measured in 1 M LiClO4–propylene carbonate (PC) non-aqueous electrolyte. An amorphous 350 nm-thick TiO2 film that was heated at 300°C in 60% ambient oxygen exhibited the maximum transmittance variation (ΔT%), 14.2%, between the bleached state and the colored state, with a ΔOD of 0.087, Q of 10.9 mC/cm2, η of 7.98 cm2/C and x in Li x ClO4 of 0.076 at a wavelength (λ) of 550 nm.  相似文献   

14.
Charge separation plays a key role in the conversion of solar energy into chemical energy for use in the redox reaction and as well as in the photocatalytic activity. In this study, SrTiO3 particles with different morphologies including irregular, tetrahexahedron, and cube were synthesized by an in situ solvothermal method. The photocatalytic activity of the synthesized nanoparticles was investigated in the photocatalytic decomposition of methylene blue under UV light irradiation. Tetrahexahedron SrTiO3 particles exhibited high decomposition activity (70 %), which is about two times higher than those of the irregular and cubic SrTiO3 particles. The high decomposition activity of tetrahexahedron SrTiO3 particles could be attributed to the improvement of charge separation achieved on different crystal facets. To reach a good charge separation, tetrahexahedron SrTiO3/TiO2 coupled nanoparticles were fabricated by impregnation method. Results showed that coupling tetrahexahedron SrTiO3 with TiO2 could produce efficient charge separation between tetrahexahedron SrTiO3 and TiO2 due to their matched band edges. In order to achieve better charge separation, the tetrahexahedron SrTiO3/90 %TiO2 sample was calcined at different temperatures in the 450–750 °C range. Tetrahexahedron SrTiO3/90 %TiO2 coupled nanoparticles calcined at 650 °C show high photocatalytic activity compared with other samples. The prepared samples were characterized by using various techniques such as X-ray diffraction, scanning electron microscopy, photoluminescence emission spectra, and UV–Vis diffuse reflectance spectroscopy.  相似文献   

15.
The SrFe12O19/poly (vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol-gel assisted electrospinning with ferric nitrate, strontium nitrate and PVP as starting reagents. Subsequently, the M-type strontium ferrite (SrFe12O19) nanofibers were derived from calcination of these precursors at 750–1,000 °C.The composite precursors and strontium ferrite nanofibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The structural evolution process of strontium ferrite consists of the thermal decomposition and M-type strontium ferrite formation. After calcined at 750 °C for 2 h the single M-type strontium ferrite phase is formed by reactions of iron oxide and strontium oxide produced during the precursor decomposition process. The nanofiber morphology, diameter, crystallite size and grain morphology are mainly influenced by the calcination temperature and holding time. The SrFe12O19 nanofibers characterized with diameters of around 100 nm and a necklace-like structure obtained at 900 °C for 2 h, which is fabricated by nanosized particles about 60 nm with the plate-like morphology elongated in the preferred direction perpendicular to the c-axis, show the optimized magnetic property with saturation magnetization 59 A m2 kg−1 and coercivity 521 kA m−1. It is found that the single domain critical size for these M-type strontium ferrite nanofibers is around 60 nm.  相似文献   

16.
In this work, a nitrogen-doped anatase TiO2 nanocrystal is prepared by a modified sol-gel preparation method using the nonionic surfactant (polyoxyethylene sorbitan monooleate) as a structural controller and a soft template. The as-prepared samples are characterized by X-ray diffraction, Raman spectroscopy, UVVis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy techniques. Then the photocatalytic activity of these samples is assessed by the photocatalytic oxidation of phenol under visible light irradiation. The phenol concentration is measured using a UV-Vis spectrometer. Experimental results show that N-doping leads to an excellent visible light photocatalytic activity of the TiO2 nanocatalyst. Furthermore, the formation energy and electronic structure of pure and N-doped anatase TiO2 are described by density functional theory (DFT) calculations. It is found that N-doping narrowed the band gap of bare TiO2, which leads to an excellent visible light photocatalytic activity of N–TiO2 nanocatalysts. Therefore, the prepared N–TiO2 photocatalyst is expected to find the use in organic pollutant degradation under solar light illumination.  相似文献   

17.
Ba1−x Sr x TiO3(x = 0–0.5, BST) nanofibers with diameters of 150–210 nm were prepared by using electrospun BST/polyvinylpyrrolidone (PVP) composite fibers by calcination for 2 h at temperatures in the range of 650–800 °C in air. The morphology and crystal structure of calcined BST/PVP nanofibers were characterized as functions of calcination temperature and Sr content with an aid of XRD, FT-IR, and TEM. Although several unknown XRD peaks were detected when the fibers were calcined at temperatures less than 750 °C, they disappeared with increasing the temperature (above 750 °C) due to its thermal decomposition and complete reaction in the formation of BST. In addition, the FT-IR studies of BST/PVP fibers revealed that the intensities of the O–H stretching vibration bands (at 3430 and 1425 cm−1) became weaker with increasing the calcination temperature and a broad band at 540 cm−1, Ti–O vibration, appeared sharper and narrower after calcination above 750 °C due to the formation of metal oxide bonds. However, no effect of Sr content on the crystal structure of the composites was detected.  相似文献   

18.
It has been found that the photocatalytic activity of TiO2 toward the decomposition of gaseous benzene can be greatly enhanced by loading TiO2 on the surface of SrAl2O4: Eu2+, Dy3+ using sol–gel technology. The prepared photocatalyst was characterized by BET, XRD, and XPS analyses. XRD results reveal that the peaks of titania in either rutile or anatase form are not detected by XRD in the 2θ region from 20° to 50°. The binding energy values of Ti 2p of pure TiO2 are 458.90 and 464.60 eV, while for TiO2/SrAl2O4: Eu2+, Dy3+, the binding energy values of Ti 2p are 458.50 and 464.20 eV. The results indicate that the optimum loading of TiO2 is 1 wt% and TiO2/SrAl2O4: Eu2+, Dy3+ (1 wt%) demonstrates 1.4 times the photocatalytic activity of that of pure TiO2, but the underlying mechanism of SrAl2O4: Eu2+, Dy3+ in the photocatalytic reaction remains to be unraveled.  相似文献   

19.
Microcomposites consisting of TiO2 (or Ce-doped TiO2) and ThO2 (0.5–2% of the TiO2 mass) are produced by sol-gel synthesis of TiO2 in presence of ThO2. X-ray diffraction study reveals the effects of ThO2 (compared to the ThO2-free TiO2, obtained by the same method) on the anatase interplanar distances, crystallites size and phase composition. The photocatalytic tests in presence of the composites under UV irradiation reveal an increase of the Malachite Green degradation rate constant. The effect depends on the Th relative content, temperature of annealing of the catalyst and addition of other doping agent. The highest photocatalytic activity is observed for TiO2 obtained at 550°C and containing 1% ThO2. The composite exhibits activity in dark, also. The presence of Ce4+ ions is not an obligatory requirement for the realization of the ThO2 effect. The reported results suggest that the radioactivity of the Th and/or its decay products is one of the main factors responsible for the increased photocatalytic activity of TiO2.   相似文献   

20.
We report a simple and inexpensive synthesis route of TiO2 nanoparticles using electrical arc discharge between titanium electrodes in oxygen bubbled deionized (DI) water followed by heat treatment. The resulting nanoparticles were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD patterns demonstrate formation of TiO2 phase in oxygen bubbled water after heat treatment and dominance of rutile to anatase phase. The size and morphology of TiO2 nanoparticles were studied using different arc currents as a crucial parameter in properties of final product. Microscopic studies reveal nanosize spherical particles. DLS results indicate that at 20 A arc current, the size of the particles is about 37 nm and increases to 59 nm by increasing the arc current up to 40 A. Photodegradation of Rhodamine B (Rh. B) as a standard pollution shows that heat treated samples in oxygen bubbled water for 2 h at 500 °C, have more photocatalytic activity due to enhancement in crystallinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号