首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 367 毫秒
1.
Three novel 25,27-dihydroxy-26,28-bis(3-benzylselenopropoxy)-5,11,17,23-tetra-tert-butylcalix[4]-arene (2),25,27-dihydroxy-26,28-bis[3-(2-hydroxyethylseleno)propoxy]-5,11,17,23-tetra-tert-butyl-calix[4]arene (3) and 25,27-dihydroxy-26,28-bis(3-propylselenoproppxy)-5,11,17,23-tetra-tert-butyl-calix[4]arene (4) were synthesized for the comparison of their ion-selectivity in ion-selective electrodes (ISE). X-ray structure of the CH/π complex of 4.CH2Cl2 was elucidated. ISEs based on 2-4 as neutral ionophores were prepared, and their selectivity coefficients for Ag (logKAg,M^pot) were investigated against some main group metal ions and transition metal ones using the fixed interference method (FIM). These ISEs showed excellent Ag^ selectivity over most of the interfering cations examined. It is evident that the stronger Hg^2 interference may not be produced while hard donors (hydroxy) are close to the soft selenium donors.  相似文献   

2.
王浩  张衡益  刘育 《中国化学》2005,23(6):740-744
Two calix[4]arene isomers with benzaldehyde moieties, i.e., 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(o-formyl-phenoxy)ethoxy]-26,28-dihydroxycalix[4]arene (3) and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(p-formylphenoxy)-ethoxy]-26,28-dihydroxycalix[4]arene (4), were synthesized according to a newly designed route in high yields, and their crystal structures have been determined by X-ray crystallographic study. The photophysical behavior on complexation of calix[4]arene derivatives 3 and 4 with terbium(Ⅲ) nitrate was investigated in anhydrous acetonitrile at 25℃ by UV-Vis and fluorescence spectroscopies. The crystallographic structure of 3 indicated that the eight oxygen atoms formed a preorganized ionophoric cavity due to intramolecular π-π stacking, which could encapsulate lanthanide ions tightly. In sharp contrast, the compound 4 formed a linear array by intermolecular π-π stacking, hence the oxygen atoms of pendant arms could not coordinate with metal ions, giving a poor binding ability to Tb^3 . The absorption spectra of 3 with Tb^3 showed clearly a new broad intense absorption at 385nm. Interestingly, the narrow emission line spectrum has also been observed for compound 3 with Tb^3 , and the results obtained were discussed from the viewpoint of energy transfer mechanism between host structures and the properties of lanthanide ions.  相似文献   

3.
郑炎松  肖勤 《中国化学》2005,23(10):1289-1291
Chiral nitrogen-containing calix[4]arene was easily synthesized by the reaction of 25,27-di(2-bromoethoxy)- 26,28-dihydroxy-5,11,17,23-tetrakis(t-butyl)calix[4]arene with S-(-)-1-phenylethylamine in excellent yield, and showed good ability to recognize the enantiomers of mandelic acid and 2,3-dibenzoyltartaric acid. This finding has potential application to assay and separation of enantiomers of the carboxylic acids.  相似文献   

4.
何卫江  邱琳    李峻柏  张宇  郭子建  朱龙根 《中国化学》2006,24(6):800-806
The Langmuir monolayer properties of lower rim aromatically substituted calix[4]arenes, 5,11,17,23-tetra-tert-butyl-25,27-bis(2-naphth-1'-ylacetylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BNAEC), 5,11,17,23-tetra-tert- butyl-25,27-bis(2-benzoylamino ethoxy)-26,28-dihydroxylcalix[4]arene (BBAEC) and 5,11,17,23-tetra-tert-butyl- 25,27-bis(2-cinnamoylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BCAEC), have been studied. Film balance measurements and Brewster angle microscopy (BAM) observation demonstrate that all the compounds can form Langmuir monolayers with different molecular limiting areas. BNAEC or BBAEC monolayer is able to form condensed domains during compression, while BCAEC monolayer can never form condensed domain. BNAEC monolayer is more readily to form condensed domain than BBAEC monolayer. Moreover, BNAEC monolayer can form the total condensed phase during compression even when T=28℃, while BBAEC monolayer can not when T 〉 10 ℃. The results imply that different lower rim aromatic substitutions affect essentially the intermolecular interaction and molecular packing in the monolayer at air/water interface.  相似文献   

5.
A novel series of calix[4]arene derivatives were synthesized via a Pd-catalyzed Sonogashira coupling reaction from para-substituted iodobenzene and 25,27-dipropargyl-calix[4]arene. Fluorescence studies found that nitro-phenols clearly exhibited quenching effects on 2c. Moreover, we minimized the free energy of the complexes by theoretical calculations. As the result, the πr-π stacking interactions take place between the 4-nitrophenol and calix[4]arene, which may lead to the significant fluorescence quench.  相似文献   

6.
The bis(calix [4] arene)3 was synthesized in moderate yield by the reaction of p-tert-butylcalix [4] arene (1) with 1,4-bis(chloromethyl) benzene (2). The conformation of all alkylated product 4 was investigated by the variable-temperature ^1H-NMR.  相似文献   

7.
A series of calixarene derivatives 2―5 containing heteroatom at the lower rim have been synthesized. 1H NMR studies and crystallographic structures demonstrated that the calix[4]arene derivatives adopted cone conformations. Their cationic binding abilities and selectivities towards heavy and tran- sition metal ions have been evaluated by solvent extraction of aqueous metal picrates. The obtained results indicated that the introduction of nitrogen, sulfur, and/or phosphor atoms to the calix[4]arene framework could effectively enhance their binding ability and selectivity for heavy and transition metal ions, such as Pb2 or Ag .  相似文献   

8.
Two multidentate ligands 2,9-di[6'-(2″-hydroxyl-3″-methoxyphenyl)-n-2',5'-diazahexyl]-1,10-phenanthroline(LA)and 2,9-di(6'-α-phenol-n-2',5'-diazahexyl)-1,10-phenanthroline(LB)were synthesized and fully characterized.Protonation of the ligands and the stability of the complexes of the ligands with divalent metal ions were investigated.The trinuclear metal complexes [Cu(Ⅱ)and Zn(Ⅱ)] of the ligands were studied,as catalysts,for the transphosphorylation of the RNA-model substrate 2-hydroxypropyl-p-nitrophenyl phosphate(HPNP).The second-order rate constants of HPNP-hydrolysis catalyzed by M3L and M3LH-1 were obtained,which indicated that Zn3LBH-1 was the most efficient catalyst among them.The proposed mechanisms included the activation of the substrate via binding to the metal ions and intramolecular nucleophilic attack by the deprotonated C2-hydroxyl of HPNP.  相似文献   

9.
Calix[4] (aza) crowns containing amide groups 3a-d were synthesized by the reactions of calix[4]arene (1a) or p-tert-butylcalix[4]arene (1b) with N, N'-ethylenebis(2-chloroac-etamide) (2a) or N, N'-1,2-phenylenebis(2-chloroacetamide) (2b) by one step procedure in yields of 85-90% . Calix[4]-(aza) crowns 4a-b could be obtained by the reduction of 3a-b with LiAlH4 in yields of 51 and 67% , respectively. The nitration of 3a or 3c afforded new chromogenic calix[4]arenes 5a bearing two nitrophenol moieties and 5c bearing one nitro-phenol and one quinone moiety, respectively. The ipso-nitrations of 3b and 3d were also studied. Both gave the products containing one nitrophenol and one quinone moiety. Moreover, a very interesting calix[4]arene derivative 5d containing one cyclohexadienone moiety was also separated as the main product when 3d was ipso -nitrated.  相似文献   

10.
Reacting calix[6]arene hexaesters with poly(ethyleneimine),a series of calix[6]amidesbased polymers were obtained for the first time.It is found that they show high absorption capacities towards soft cations comparing to hard cations,and the absorption abilities enhanced with the increasing of calixarene content,which may indicates the cavity of calixarene plays crucial role in absorption.Polymer 2c shows good selective absorption capability towards Ag^ among the tested cations.  相似文献   

11.
The synthesis of two 1,3‐bis(4‐ethynylbenzyloxy)calix[4]arenes, 5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 1 ) and 25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 2 ), was accomplished through Sonogashira coupling of appropriate calixarene derivatives. Methods for the polymerization of these bifunctional building blocks with Rh(I) as a catalyst, leading ultimately to conjugated polymers having calix[4]arene units incorporated into the main chain, were explored. Calixarenes 1 and 2 were efficiently polymerized with rhodium‐based initiators and afforded the conjugated polymers poly{5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene} ( poly 1 ) and poly{25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene}. Depending on the conditions, high conversions and good yields were obtained. The effects of adding cocatalysts (NHEt2 and/or PPh3) were studied in connection with the number‐average molecular weight and the molecular weight distribution of the resultant polymer ( poly 1 ) and tentatively correlated with the formation of low‐molecular‐weight materials. A catalytic system containing triphenylphosphine as the sole additive ([Rh(nbd)Cl]2; [Rh]/[PPh3] = 0.5) proved to be the best for the polymerization of ptert‐butylcalixarene compound 1 . Linear polymers having high number‐average molecular weights (up to 1.1 × 105 g mol?1) with low polydispersities were produced under these conditions. For debutylated homologue 2 , its polymerization was best carried out in the absence of any added cocatalyst. A cyclopolymerization route, comprising the intramolecular ring closing of the calix[4]arene pendant ethynyl groups followed by an intermolecular propagation step, is advanced to explain the results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7054–7070, 2006  相似文献   

12.
A new type of voltammetric sensor, Langmuir‐Blodgett (LB) film of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐di(3‐thiadiazole‐propanoxy)‐26,28‐dihydroxycalix[4]arene modified glassy carbon electrode (LBTZCA–GCE), was prepared. The electrochemical properties of LBTZCA–GCE were researched in detail and its recognizing mechanism for silver ion in aqueous solution was discussed. Using this voltammetric sensor, a new stripping voltammetric method for determining of Ag+ was erected with good sensitivity, selectivity, reproducibility and recovery. The detection limit was 8×10?9 M at accumulation time of 180 s. By this method, real samples (lake water, tap water and synthesis sample) were analyzed and the results obtained were well satisfactory.  相似文献   

13.
Theoretical studies of 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐azacrown‐5 ( L1 ), 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐N‐phenyl‐azacrown‐5 ( L2 ), and the corresponding complexes M+/ L of L1 and L2 with the alkali‐metal cations: Na+, K+, and Rb+ have been performed using density functional theory (DFT) at B3LYP/6‐31G* level. The optimized geometric structures obtained from DFT calculations are used to perform natural bond orbital (NBO) analysis. The two main types of driving force metal–ligand and cation–π interactions are investigated. The results indicate that intermolecular electrostatic interactions are dominant and the electron‐donating oxygen offer lone pair electrons to the contacting RY* (1‐center Rydberg) or LP* (1‐center valence antibond lone pair) orbitals of M+ (Na+, K+, and Rb+). What's more, the cation–π interactions between the metal ion and π‐orbitals of the two rotated benzene rings play a minor role. For all the structures, the most pronounced changes in geometric parameters upon interaction are observed in the calix[4]arene molecule. In addition, an extra pendant phenyl group attached to nitrogen can promote metal complexation by 3D encapsulation greatly. In addition, the enthalpies of complexation reaction and hydrated cation exchange reaction had been studied by the calculated thermodynamic data. The calculated results of hydrated cation exchange reaction are in a good agreement with the experimental data for the complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

14.
The synthesis of two new flavin substituted calix[4]arene derivatives, 9 and 10 , is described. The first flavin substituted calix[4]arene derivative 9 was synthesized by the reaction of 3‐methylalloxazine ( 5 ) with 25,27‐bis(3‐bromopropoxy)‐26,28‐dihydroxy‐5,11,17,23‐tetra(tert‐butyl)calix[4]arene ( 4 ) in high yield (92%). The other derivative 10 was prepared from 3‐methylalloxazine‐1‐acetic acid ( 7 ) and 25,27‐bis(3‐cyanopropoxy)calix[4]arene ( 3 ). All new compounds were characterized by a combination of FT‐IR and 1H‐NMR spectroscopy, and elemental‐analysis techniques.  相似文献   

15.
A novel 1,3‐alternate 25,27‐bis‐[cyanopropyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene‐bonded silica gel stationary phase (CalixPrCN) was prepared and its structure was confirmed by ATR‐FTIR spectroscopy and elemental analysis. The CalixPrCN phase was characterized in terms of its surface coverage, hydrophobic selectivity, aromatic selectivity, shape selectivity, hydrogen bonding capacity, residue metal content, and silanol activity based on Tanaka, Lindner, and SMR 870 test protocols. The effect of the acetonitrile content on the retention and selectivity of the selected neutral, basic, and acidic solutes was studied. The neutral and acidic analytes exhibited classical RP behavior, in which retention time decreases with increasing acetonitrile content. In contrast, basic analytes showed an increase in retention at low and high percentages of acetonitrile, forming “U‐shaped” retention profiles. The new calixarene phase was compared with previously reported 1,3‐alternate 25,27‐bis‐[propyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene stationary phase and commercial cyanopropyl column. The results indicate that the CalixPrCN stationary phase behaves like RP packing; however, inclusion complex formation, dipole–dipole, and π–π interactions seem to be involved in the separation process. The selectivity of this phase was demonstrated in separation of polynuclear aromatic hydrocarbons, non‐steroidal anti‐inflammatory drugs, and sulfonamides as analytes.  相似文献   

16.
25, 25′, 27, 27′‐Bis(1,3‐dioxypropane)‐bis(5, 11, 17, 23‐tetra‐tert‐butylcalix[4]arene‐26,28‐diol) (4) and 25, 25′, 27, 27′‐bis(1, 4‐dioxybutane)‐bis (5, 11, 17, 23‐tetra‐tert‐butylcalix‐[4]arene‐26, 28‐diol) (5) were synthesized by the reaction of p‐tert‐butylcalix[4]arene (1) with preorganized 25, 27‐bis(3‐bromoproxyl)calix[4]arene‐26, 27‐diol (2) and 25, 27‐bis(3‐bromobutoxyl)calix[4]arene‐26, 27‐diol (3) in the presence of K2CO3 and KI. Compounds 4 and 5 were characterized with X‐ray analysis and the selectivity of 4 and 5 toward K+ over other alkali metal ions, alkaline metal ions as well as NH4+ were investigated with an ion‐selective electrode.  相似文献   

17.
《Electroanalysis》2006,18(10):1019-1027
A new PVC membrane potentiometric sensor for Ag(I) ion based on a recently synthesized calix[4]arene compound of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐dihydroxy‐calix[4]arene‐thiacrown‐4 is developed. The electrode exhibits a Nernstian response for Ag(I) ions over a wide concentration range (1.0×10?2?1.0×10?6 M) with a slope of 53.8±1.6 mV per decade. It has a relatively fast response time (5–10 s) and can be used for at least 2 months without any considerable divergence in potentials. The proposed electrode shows high selectivity towards Ag+ ions over Pb2+, Cd2+, Co2+, Zn2+, Cu2+, Ni2+, Sr2+, Mg2+, Ca2+, Li+, K+, Na+, NH4+ ions and can be used in a pH range of 2–6. Only interference of Hg2+ is found. It is successfully used as an indicator electrode in potentiometric titration of a mixture of chloride, bromide and iodide ions.  相似文献   

18.
The crystal structures of acetonitrile solvates of two related lithium calixarene complexes have been determined by low‐temperature single‐crystal X‐ray diffraction using synchrotron radiation. Bis(μ‐5,11,17,23‐tetra‐tert‐butyl‐26,28‐dihydroxy‐25‐methoxy‐27‐oxidocalix[4]arene)dilithium(I) acetonitrile tetrasolvate, [Li2(C45H57O4)2]·4C2H3N or [p‐tert‐butylcalix[4]arene(OMe)(OH)2(OLi)]2·4MeCN, (I), crystallizes with the complex across a centre of symmetry and with four molecules of unbound acetonitrile of crystallization per complex. Tetraacetonitrilebis(μ‐5,11,17,23‐tetra‐tert‐butyl‐26,28‐dihydroxy‐25,27‐dioxidocalix[4]arene)tetralithium(I) acetonitrile octasolvate, [Li4(C44H54O4)2(C2H3N)4]·8C2H3N or {p‐tert‐butylcalix[4]arene(OH)2(OLi)[OLi(NCMe)2]}2·8MeCN, (II), also crystallizes with the complex lying across a centre of symmetry and contains eight molecules of unbound acetonitrile per complex plus four more directly bound to two of the lithium ions, two on each ion. The cores of both complexes are partially supported by O—H...O hydrogen bonds. The methoxy methyl groups in (I) prevent the binding of any more than two Li+ ions, while the corresponding two O‐atom sites in (II) bind an extra Li+ ion each, making four in total. The calixarene cone adopts an undistorted cone conformation in (I), but an elliptical one in (II).  相似文献   

19.
Two novel tweezer-like 25,27-dihydroxy-26,28-bis(phenylthiaethoxy)calix[4]arenes 6 and 7 were synthesized by the reaction of 25,27-dihydroxy-26,28-bis(bromoethoxy)calix[4]arenes 3 and 4 for the evaluation of their ion-selectivity in ion-selective electrodes (ISEs). X-ray structural analysis indicated that calix[4]arene 7 is in an interesting infinite linear aggregate via self-inclusion. For investigation of the influences of substitutes on the behavior of the ISEs, the halogen substituted aryl analogues of 25,27-dihydroxy-26,28-bis(arylthiaethoxy)calix[4]arenes 8-12 were also synthesized and their ISE performances were evaluated under the same conditions. ISEs based on 6-12 as neutral ionophores were prepared, and their selectivity coefficients for Ag+ (log KAg,M(pot)) were investigated against other alkali metal, alkaline-earth metal, lead, ammonium ions and some transition metal ions using the fixed interference method (FIM). These ISEs showed excellent Ag+ selectivity over most of the interfering cations examined, except for Hg2+ having relative smaller interference (log KAg,Hg(pot) < or = 2.1). The 19F NMR spectra of 9 and 9.AgClO4 were recorded for investigation the fluorine environments in the complex. The 19F NMR spectra strongly suggested that the fluorine atoms on ionophore 9 participated in ligation with silver cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号