首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and selective HPLC assay was developed and utilized for determination of human plasma protein binding of baicalin. The method involved solid-phase extraction and reversed-phase chromatographic separation with a mobile phase of acetonitrile-0.02 mol/L phosphate buffer (pH 2.5; 25:75, v/v) and UV detection at 276 nm. The standard curve for baicalin was linear over the concentration range 0.1-20 microg/mL and the limit of detection was 0.02 microg/mL. The absolute recovery was greater than 76%. The intra-day and inter-day variations were less than 10%. Ultrafiltration technique was applied to determining the plasma protein binding of baicalin in human plasma. Results show the plasma protein binding of baicalin was in the range 86-92% over all the concentrations studied and the protein binding association constant was determined to be 1.21 x 10(5) L/mol at 4 degrees C.  相似文献   

2.
An RP-HPLC method for the separation and determination of aluminium(III), vanadium(V), iron(III), copper(II) and nickel(II) with CALKS (Chromazol KS) and PAR ([4-(2-pyridylazo)resorcinol]) chelating on a YWG-ODS column was developed. A mixture of methanol-tetrahydrofuran(THF)-water (60:5:35 v/v) containing 0.2 mol/L LiCl, 5 x 10(-5) mol/L CALKS, 5 x 10(-5) mol/L PAR and acetate buffer solution (pH 4.9) was selected as mobile phase. The method has high sensitivity, with the detection limits being 6 ng/mL for aluminium(III), 3.5 ng/mL for vanadium(V), 10.4 ng/mL for iron(III), 6.3 ng/mL for copper(II) and 8.7 ng/mL for nickel(II). It also has good selectivity, so that most foreign metal ions do not interfere under the optimum conditions. The method can be applied to the simultaneous determination of trace amounts of aluminium, vanadium, iron, copper and nickel in rice and flour samples.  相似文献   

3.
As a prerequisite to the determination of pharmacokinetic parameters of icariin in rats, an HPLC method using UV detection was developed and validated. Icariin and the internal standard, quercetin, were extracted from plasma samples using ethyl acetate after acidification with 0.05 mol/L NaH2PO4 solution (pH 5.0). Chromatographic separation was achieved on an Agilent XDB Cls column (250 x 4.6 mm id, 5 microm) equipped with a Shim-pack GVP-ODS C18 guard column (10 x 4.6 mm id, 5 microm) using a mobile phase of ACN/water/acetic acid (31:69:0.4 v/v/v) at a flow rate of 1.0 mL/ min. Detection was at 277 nm. The calibration curve was linear from 0.05 to 100.0 microg/mL with 0.05 microg/mL as the lower LOQ (LLOQ) in plasma. The intra- and interday precisions in terms of RSD were lower than 5.7 and 7.8% in rat plasma, respectively. The accuracy in terms of relative error (RE) ranged from -1.6 to 3.2%. The extraction recoveries of icariin and quercetin were 87.6 and 80.1%, respectively. The main pharmacokinetic parameters for rats were determined after a single intravenous administration of 10 mg/kg icariin: t1/2, 0.562 +/- 0.200 h; AUC0-infinity, 8.73 +/- 2.23 microg x h/mL; CLToT, 20.10 +/- 5.80 L/kg x h; Vz, 1.037 +/- 0.631 L/kg; MRT0-infinity, 0.134 +/- 0.040 h; and Vss, 0.170 +/- 0.097 L/kg.  相似文献   

4.
A sensitive, simple, and specific liquid chromatographic method coupled with electrospray ionization-mass spectrometry (MS) is presented for the determination of sertraline in plasma. With zaleplon as the internal standard, sertraline is extracted from the alkalized plasma with cyclohexane. The organic layer is evaporated and the residue is redissolved in the mobile phase of methanol-10 mmol/L ammonium acetate solution-acetonitrile (62:28:10, v/v/v). An aliquot of 20 microL is chromatographically analyzed on a Shimadzu ODS C18 column (5 microm, 150- x 4.6-mm i.d.) by means of selected-ion monitoring mode of MS. The calibration curve of sertraline in plasma exhibits a linear range from 0.5 to 25.0 ng/mL with a correlation coefficient of 0.9998. The limit of quantitation is 0.5 ng/mL. The intra- and interday variations (relative standard deviation) are less than 7.8% and 9.5% (n = 5), respectively. The application of this method is demonstrated for the analysis of sertraline plasma samples in a human pharmacokinetic study.  相似文献   

5.
A high-performance liquid chromatographic-mass spectrometric (LC/MS) assay was developed and validated for the determination of muraglitazar, a novel alpha/gamma, dual PPAR activator, in monkey plasma. The method utilized trazodone as the internal standard (IS). The extraction scheme involved a simple protein precipitation procedure with the use of a mixture of acetonitrile and methylene chloride. Separation was carried out on a BDS Hypersil C(18) analytical column (2 x 50 mm, 3 microm) and an effective chromatographic separation of muraglitazar (3.31 min) and trazadone (2.27 min) was achieved at a ssow rate of 0.3 mL/min. The mobile phase, used in an isocratic mode, consisted of 90% A (acetonitrile: 0.1% formic acid, 50:50 v/v) and 10% B (acetonitrile: 0.1% formic acid, 95:5 v/v). Detection of muraglitazar and trazodone was by positive ion turbo-ion spray mass spectrometry in the SIM mode. The mass spectrometer was programmed to admit the protonated molecules at m/z 372.0 (IS) and m/z 517.1 (muraglitazar). The standard curve, which ranged from 2 to 500 ng/mL, was fitted to a 1/x weighted linear regression model. The between run precision and within-run precision values of the assay was within 6.2% RSD. The assay accuracy was within 10.0% of the nominal values of the range of QC samples (6.0-400 ng/mL). At the lower limit of quantitation (LLQ) of 2 ng/mL, the deviation of the predicted concentrations from the nominal value of LLQ samples (n = 6) were within +/-16.6%. Muraglitazar was stable in monkey K(3)EDTA plasma for at least three freeze-thaw cycles. The processed samples (spiked samples) were stable for 48 h in auto-sampler at 10 degrees C. The average extraction recoveries of muraglitazar and IS were 83.3 and 91.9%, respectively. The assay was applied to delineate the pharmacokinetic disposition of muraglitazar in monkeys following a single oral dose.  相似文献   

6.
基于氟喹诺酮类药物与铽离子形成配合物后的荧光增强作用,建立了同时检测鸡肉中氟喹诺酮类(FQs)药物环丙沙星、诺氟沙星和恩诺沙星残留的Tb3+增敏高效液相色谱(HPLC)柱后衍生荧光检测方法。优化的实验条件如下:流动相为0.05 mol/L 醋酸/醋酸钠缓冲液(pH 6.0)-乙腈(体积比为89∶11),色谱柱为Hypersil BDS-C18,柱温40 ℃,流速0.8 mL/min;Tb3+浓度为8×10-5 mol/L;衍生反应温度40 ℃,衍生泵流速0.5 mL/min;荧光检测激发波长271 nm,发射波长545 nm。实验结果表明,将上述3种药物以1.0,10.0,50.0,100.0 ng/g水平添加到鸡肉后的回收率范围为66.3%~88.0%,相对标准偏差(RSD)均小于15.0%。定量分析的线性范围为0.1~500 ng/mL,方法的日内和日间RSD均小于13.0%;最低检出限分别为0.05(环丙沙星)、0.05(诺氟沙星)和0.08(恩诺沙星)ng/g,比前人报道的非衍生高效液相色谱荧光检测法检测FQs药物的灵敏度有极大的提高。该项研究为FQs药物多残留检测提供了灵敏度更高的新方法。  相似文献   

7.
高效液相色谱法测定大鼠血浆中的原儿茶酸   总被引:3,自引:0,他引:3  
《色谱》2007,25(2):207-210
建立了大鼠血浆中原儿茶酸含量测定的高效液相色谱方法。采用的色谱柱为DiamondsilTM C18 柱(150 mm×4.6 mm,5 μm);流动相为乙腈-水(体积比为9∶91,用H3PO4 调pH至2.5);流速1.2 mL/min;检测波长260 nm;内标为对羟基苯甲酸。原儿茶酸的线性范围为0.050~3.20 mg/L,线性相关系数为0.9978,最低定量限为0.050 mg/L,日内和日间测定的精密度(以相对标准偏差表示)均低于7.0%,准确度(以相对误差表示)为-1.4%~2.6%;在0.050,0.40,3.20 mg/L低、中、高3个添加浓度水平下,血浆样品的提取回收率分别为83.4%,87.3%,91.1%。该方法简便,灵敏,准确,适用于大鼠体内原儿茶酸的药物动力学研究。  相似文献   

8.
A selective and sensitive method for the determination of piritramide in human plasma is described. A 1-ml aliquot of plasma was extracted with 10 ml of hexane-isoamyl alcohol (99.5:0.5, v/v) (extraction efficiency 86%) after addition of 50 microliters of 2 M ammonia and 20 microliters of aqueous strychnine solution (100 ng per 10 microliters) as internal standard. Gas chromatography was performed with J&W DB-1, 30 m x 0.53 mm I.D. separation column, film thickness 1.5 microns, using an nitrogen-phosphorus-sensitive detector. The assay was linear in the concentration range 3.75-2250 ng/ml (r = 0.999), with a lower limit of detection of 1-2 ng/ml. The precision was determined using spiked plasma samples (10 and 50 ng/ml), with coefficients of variation of 3.5 and 3.1% (intra-day; n = 5) and 4.6 and 4.1% (inter-day; n = 4). In the range 3.75-150 ng/ml, the accuracy of the assay was 3.36%. The method was used for the determination of piritramide plasma concentrations in patients receiving intra- or post-operative analgesia.  相似文献   

9.
A selective and sensitive liquid chromatographic method was developed for the determination of fluoxetine (FLU) in plasma. FLU was isolated from plasma by liquid-liquid extraction. The chromatographic separation was performed on an analytical 250 x 3.9 mm id Novapak C18 column (4 microm particle size) with an isocratic mobile phase consisting of phosphate buffer-acetonitrile-methanol -triethylamine (58 + 30 + 10 + 2, v/v) adjusted to pH 7. Using UV detection at 226 nm, the detection limit for FLU in plasma was 3 ng/mL. No interferences were found with tricyclic antidepressant drugs, which allows this method to be used in clinical studies. The calibration curve was linear over the concentration range of 10-200 ng/mL. The average recovery was about 80% for plasma. The inter- and intraday assay coefficients of variation were <8%.  相似文献   

10.
Zhou L  Li J  Wang X  Qiao J  Zhang Z 《色谱》2012,30(5):452-456
运用高效液相色谱-电喷雾质谱(HPLC-ESI-MS)技术,建立了快速、简单、灵敏的比格犬静脉滴注艾普拉唑钠盐后血药浓度的检测方法。血浆样品采用蛋白沉淀法,以丁螺环酮作为内标,色谱柱为Teknokroma Kromasil C18(100 mm×2.1 mm, 5 μm),流动相为水-甲醇-乙腈(69:8:23, v/v/v)(含0.1%的甲酸),流速0.2 mL/min,采用电喷雾(ESI)离子源以正离子方式检测。绘制血药浓度-时间曲线,并采用DAS 2.0计算药代动力学参数。方法学实验结果表明内源性杂质不干扰艾普拉唑和内标的测定,线性范围为5~10000 μg/L (r=0.994),最低定量限为5 μg/L,精密度和准确度均符合生物样品测定的要求。低、中、高3个浓度的绝对回收率在106%左右,基质效应小于142.0%,表明该方法适合比格犬血浆中艾普拉唑浓度的测定及药代动力学研究。比格犬静脉滴注艾普拉唑钠盐3个剂量(0.2 mg/kg、0.8 mg/kg和3.2 mg/kg)后的药-时曲线下面积(AUC(0~∞))分别为(2.4×104±3×103)、(8.8×104±1.6×104)和(5.4×105±8×104) μg/L•min,呈线性药物代谢动力学过程。  相似文献   

11.
A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed and validated for the determination of DRF-1042, a novel orally active camptothecin (CPT) analog, in human plasma. The sample preparation was a simple deproteinization with acidified methanol yielding almost 100% recovery of DRF-1042. An isocratic reverse-phase HPLC separation was developed on a Supelcosil-LC318 column (250 x 4.6 mm, 5 microm) with mobile phase consisting of 1% v/v triethylamine acetate, pH 5.5 and acetonitrile (80:20, v/v) at a fl ow rate of 1.0 mL/min. The eluate was monitored with a fluorescence detector set at excitation and emission wavelengths of 370 and 430 nm, respectively. The standard curves were linear (r(2) > 0.999) in the concentration ranges 5.0-2004 ng/mL. The lower limit of quantification (LLQ) of the assay was 5 ng/mL. The mean measured quality control (QC) concentrations (range 5 ng/mL to 40 microg/mL) deviated from the nominal concentrations in the range of -10.5-0.08 and -14.5-7.97%, inter- and intra-day, respectively. The inter- and intra-day precisions in the measurement of QC samples at four tested concentrations, were in the range 0.64-5.89% relative standard deviation (RSD) and 0.33-14.7% RSD, respectively. The method was found to be suitable for measurement of plasma concentrations above the calibration curve after serial dilutions. Stability of DRF-1042 was confirmed in a battery of studies, viz., on bench-top, in the auto-sampler, in the stock solutions, after four quick freeze-thaw cycles, up to one month at -20 degree C in human plasma and up to 2 months in the ex vivo samples. The method is simple, sensitive and reliable and has been successfully implemented to investigate the clinical pharmacokinetics of DRF-1042 in cancer patients in a phase I clinical trial.  相似文献   

12.
A simple and sensitive GC-EI-MS method using solvent extraction and evaporation was developed for the determination of olanzapine concentrations in plasma samples. Because olanzapine and promazine, which was used as the internal standard (IS), are nitrogenous bases, they can adsorb to the weakly acidic silanol groups on the surfaces of glass centrifuge tubes during solvent extraction and evaporation. Silylation of the glass tubes, addition of triethylamine (TEA), and use of a sample solution with a basic pH could prevent adsorption loss. The extraction method involved mixing plasma (500 μL) in a silylated glass tube with a promazine solution (2 μg/mL, 25 μL) in methanol containing 1% TEA. After addition of aqueous sodium carbonate (0.5 mol/L, pH 11.1, 1 mL) and extraction into 3 mL of dichloromethane/n-hexane (1:1, v/v) containing 1% TEA, the organic phase was evaporated to dryness in a silylated glass tube. The residue was dissolved in ethyl acetate containing 1% TEA (50 μL). For GC-EI-MS analysis, the calibration curves of olanzapine in human plasma were linear from 0.5 to 100 ng/mL. Intra- and interday precisions in plasma were both less than 7.36% (coefficient of variation), and the accuracy was between 94.6 and 110% for solutions with concentrations greater than 0.5 ng/mL. The limit of quantification was 0.5 ng/mL in plasma. The assay was applied to therapeutic drug monitoring in samples from three schizophrenic patients.  相似文献   

13.
A sensitive and convenient high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) assay is described for the (5-HT(lB/lD)) receptor agonist sumatriptan in human plasma. Sumatriptan was recovered from plasma (81.8 +/- 6.8%) by liquid-liquid extraction. The mobile phase flow rate was 0.3 mL/min and consisted of methanol:water:formic acid (90:10:0.1, v/v/v). The analytical column (4.6 x 100 mm) was packed with Partisil C(8) (5 micro m). The standard curve was linear from 0.7 to 70.4 ng/mL (r(2) > 0.99). The lower limit of quantitation was 0.7 ng/mL. The assay was specific, accurate (percentage deviation from nominal concentrations were <15%), precise and reproducible (within- and between-day coefficients of variation <10.3%). Sumatriptan in plasma was stable over three freeze/thaw cycles and at room temperature for one day. The utility of the assay was demonstrated by following sumatriptan plasma concentrations in two healthy subjects for 8-12 h following a single 20 mg intranasal dose.  相似文献   

14.
A simple, sensitive, selective and reliable reversed-phase high-performance liquid chromatographic (HPLC) method with UV detection is described for the determination of naltrexone in plasma samples. Naltrexone and the internal standard, naloxone, were isolated from plasma either with a liquid-liquid extraction method using ethyl acetate or with a solid-phase extraction method using Sep-Pack C18 cartridge before chromatography. The extracts were dried under a stream of nitrogen and the samples were reconstituted in the mobile phase, then 20 microL were injected on a Waters Symmetry C18 column (5 microm particle size, 4.6 x 150 mm). The mobile phase consisted of 0.06% triethylamine (pH 2.8)-acetonitrile (92:8, v/v) pumped at 1 mL/min. The peak-area ratio versus plasma concentration was linear over the range of 10-500 ng/mL and the detection limit was less than 8 ng/mL. Quantification was by ultra-violet detection at 204 nm. The present method was applied to the determination of the plasma concentration of naltrexone in dialyzed patients. Patients (n = 8) with severe generalized pruritus received 50 mg of naltrexone orally per day for 2 weeks. The variability in the therapeutic response in treated patients required plasma concentration investigations of this opioid antagonist.  相似文献   

15.
皮立  胡凤祖  师治贤 《色谱》2005,23(6):639-641
用所建立的高效液相色谱-荧光检测法测定了罂粟籽和火锅汤料中的罂粟碱。采用的色谱柱为RP-C18柱(250 mm×4.6 mm i.d.,5 μm);检测激发波长为285 nm,发射波长为355 nm;流动相为甲醇-0.02 mol/L乙酸铵(体积比为70∶30),流速0.8 mL/min。实验结果表明,罂粟碱的进样量为1×10-4~0.1 μg时其质量浓度与相应峰面积有良好的线性关系,最低检测限(以信噪比大于3计)达到0.02 ng。罂粟籽中罂粟碱的回收率为99.0%~100.8%。方法快速准确,简便灵敏,分离度高,能够满足有关食品中罂粟碱的检测要求。  相似文献   

16.
Atrasentan is an endothelin antagonist selective for the ET(A) receptor in development at Abbott Laboratories for the treatment of cardiovascular disease and cell proliferation disorders. A simple and sensitive chromatographic method for the determination of atrasentan in human plasma has been developed and validated. The analytical method involves acidification of the plasma samples with 0.3 N HCl prior to extraction with 1:1 (v:v) hexane/tert-butylmethylether. The organic extract was evaporated to dryness, reconstituted with 20:80 (v:v) acetonitrile/0.05 M K(2)HPO(4) and washed with 75:25 (v:v) hexane/tert-butylmethylether. The organic layer was discarded and the aqueous layer was injected into the HPLC. Atrasentan and internal standard (ABT-790) were separated from interference using a 250 x 4.6 mm, 5 microm, 120 A Phenomenex Spherisorb C(8) analytical column with a 50 x 4.6 mm, Alltech Absorbosphere 5 microm CN guard cartridge using a mobile phase consisting of 25:15:5:55 (v:v:v:v) acetonitrile/isopropanol/methanol/0.05 M K(2)HPO(4), pH 7.0, at a flow rate of 1.0 mL/min. Fluorescence detection was achieved using lambda(ex) 278 nm and lambda(em) 322 nm. For a 1.0 mL plasma sample volume, the limit of quantitation was approximately 200 pg/mL. The method was linear from 0.2 to 1300 ng/mL (r(2) = 0.9986). Inter- and intra-day assay RSD (n = 6) were less than 10%. Mean accuracy determinations showed the quality control samples to range between 94 and 99% of the theoretical concentration.  相似文献   

17.
A highly sensitive liquid chromatographic-tandem mass spectrometric method (LC-MS-MS) is developed to quantitate ranolazine in human plasma. The analyte and internal standard tramadol are extracted from plasma by liquid-liquid extraction using diethyl ether-dichloromethane (60:40 v/v), and separated on a Zorbax extend C(18) column using methanol-10mM ammonium acetate (60:40 v/v, pH 4.0) at a flow of 1.0 mL/min. Detection is carried out by multiple reaction monitoring on a QtrapTM LC-MS-MS system with an electrospray ionization interface. The assay is linear over the range 10-5000 ng/mL with a limit of quantitation of 10 ng/mL and a lower limit of detection (S/N > 3) of 1 ng/mL. Intra- and inter-day precision are < 3.1% and < 2.8%, respectively, and the accuracy is in the range 96.7-101.6%. The validated method is successfully used to analyze the drug in samples of human plasma for pharmacokinetic studies.  相似文献   

18.
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O-beta-D-glucopyranoside-7-O-alpha-L-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C(18) column (250 x 4.6 mm, 5 microm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and isoquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.  相似文献   

19.
The development and validation of an LC-MS/MS method for the simultaneous determination of albendazole metabolites (albendazole sulfoxide and albendazole sulfone) in human plasma are described. Samples of 200 μL were extracted with ether-dichloromethane-chloroform (60:30:10, v/v/v). The chromatographic separation was performed using a C(18) column with methanol-formic acid 20 mmol/L (70:30) as the mobile phase. The method was linear in a range of 20-5000 ng/mL for albendazole sulfoxide and 10-1500 ng/mL for albendazole sulfone. For both analytes the method was precise (RSD < 12%) and accurate (RE <7%) with high recovery (>90%). The method was successfully applied to determine the plasma and cerebrospinal fluid levels of albendazole sulfoxide and albendazole sulfone in patients with subarachnoidal neurocysticercosis who received albendazole at 30 mg/kg per day for 7 days. This LC-MS/MS method yielded a quick, simple and reliable protocol for determining albendazole sulfoxide and albendazole sulfone concentrations in plasma and cerebrospinal fluid samples and is applicable to therapeutic monitoring.  相似文献   

20.
A high performance liquid chromatographic-mass spectrometric (LC/MS) assay was developed and validated for the determination of BMS-204352 in dog K(3)EDTA plasma. A 0.5 mL aliquot of control plasma was spiked with BMS-204352 and internal standard (IS) and buffered with 1 mL of 5 mM ammonium acetate. The mixture was then extracted with 3 mL of toluene. After separation and evaporation of the organic phase to dryness using nitrogen at 40 degrees C, the residue was reconstituted in the mobile phase and 25 microL of the sample were injected onto a Hypersil C(18) column (2 x 50 mm; 3 microm) at a flow rate of 0.5 mL/min. The mobile phase was consisted of two solvent mixtures (A and B). Solvent A was composed of 5 mM ammonium acetate and 0.1% triethylamine in 75:25 v/v water:methanol, pH adjusted to 5.5 with glacial acetic acid, and solvent B was 5 mM ammonium acetate in methanol. A linear gradient system was used to elute the analytes. The mass spectrometer was programmed to admit the de-protonated molecules at m/z 352.7 (IS) and m/z 357.9 (BMS-204352). Standard curves of BMS-204352 were linear (r(2) > or = 0.998) over the concentration range of 0.5-1000 ng/mL. The mean predicted quality control (QC) concentrations deviated less than 5.1% from the corresponding nominal values (ie 4, 80, 400 and 2000 ng/mL); the within- and between-assay precision of the assay were within 5.5% relative standard deviation. Stability of BMS-204352 was confirmed after at least three freeze/thaw cycles and BMS-204532 was stable in dog plasma when stored frozen at or below -20 degrees C for at least 16 weeks in spiked QC samples and for at least 4 1/2 weeks for in vivo study samples. BMS-204352 and IS were stable in the injection solvent at room temperature for at least 24 h. The assay was applied to delineate the pharmacokinetic disposition of BMS-204352 in dogs following a single intravenous dose administration. In conclusion, the assay is accurate, precise, specific, sensitive and reproducible for the pharmacokinetic analysis of BMS-204532 in dog plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号