首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a continuous-flow chemiluminescence (CL) system with artificial neural network calibration is proposed for simultaneous determination of rifampicin and isoniazid. This method is based on the different kinetic spectra of the analytes in their CL reaction with alkaline N-bromosuccinimide as oxidant. The CL intensity was measured and recorded every second from 1 to 300 s. The data obtained were processed chemometrically by use of an artificial neural network. The experimental calibration set was 20 sample solutions. The relative standard errors of prediction for both analytes were approximately 5%. The proposed method was successfully applied to the simultaneous determination of rifampicin and isoniazid in a combined pharmaceutical formulation.  相似文献   

2.
Sensitive, simple and rapid ELISA methods have been developed for the determination of four organophosphorus pesticides in extra virgin olive oil. The analytical procedure involves simultaneous extraction of the analytes from oil matrix with methanol and a freezing clean-up step (−80 °C), followed by immunoassay determination using standards in matrix. The methodology is specific for diazinon, fenthion, malathion and chlorpyrifos showing little or no cross-reactivity against other organophosphorus compounds. Limits of detection for the pesticides in olive oil are from 46 ng ml−1 for diazinon to 10 ng ml−1 for fenthion, all of them under the established MRLs for olives. The excellent recoveries (between 94 and 122%) obtained by the complete analytical protocol confirm the potential of this approach for detecting these compounds in olive oil, being useful as screening and complementary method in pesticide regulatory and food safety programs. The proposed methodology also correlates well with the reference chromatographic (GC-MS) methods.  相似文献   

3.
A rapid, sensitive and efficient liquid phase microextraction (LPME) method was developed to determine trace concentrations of some organophosphorus pesticides in water samples. This method combines liquid phase microextraction with gas chromatographic (GC) analysis in a simple and inexpensive apparatus involving very little organic solvent consumption. It involves exposing a floated drop of an organic solvent on the surface of aqueous solution in a sealed vial. Experimental parameters which control the performance of LPME such as type of organic solvent, organic solvent and sample volumes, sample stirring rate, sample solution temperature, salt addition and exposure time were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by the water samples spiked with organophosphorus pesticides. Using optimum extraction conditions, very low detection limits (0.01-0.04 μg L−1) and good linearities (0.9983 < r2 < 0.9999) were achieved. The LPME was performed for determination of organophosphorus pesticides in different types of natural water samples and acceptable recoveries (96-104%) and precisions (3.5 < R.S.D.% < 8.9) were obtained. The results suggested that the newly proposed LPME method is a rapid, accurate and effective sample preparation method and could be successfully applied for extraction and determination of organophosphorus pesticides in water samples.  相似文献   

4.
Maleki N  Safavi A  Sedaghatpour F 《Talanta》2004,64(4):830-835
An artificial neural network (ANN) model is developed for simultaneous determination of Al(III) and Fe(III) in alloys by using chrome azurol S (CAS) as the chromogenic reagent and CCD camera as the detection system. All calibration, prediction and real samples data were obtained by taking a single image. Experimental conditions were established to reduce interferences and increase sensitivity and selectivity in the analysis of Al(III) and Fe(III). In this way, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. Sigmoid transfer functions were used in the hidden and output layers to facilitate nonlinear calibration. Both Al(III) and Fe(III) can be determined in the concentration range of 0.25-4 μg ml−1 with satisfactory accuracy and precision. The proposed method was also applied satisfactorily to the determination of considered metal ions in two synthetic alloys.  相似文献   

5.
The feasibility of a miniaturised generic sample preparation method based on matrix solid-phase dispersion for the determination of three relevant classes of pesticides (organophosphorus pesticides, triazines and pyrethroids) in selected fruits, i.e. orange, apple, pear and grape, have been demonstrated. Satisfactory results were obtained with gas chromatography coupled to mass spectrometry with recoveries of 78–113% in orange, 62–102% in grape, 71–116% in apple and 91–110% in pear, and reproducibilities in general below 20%. The feasibility of simultaneous separation of the three families of pesticides by comprehensive two-dimensional gas chromatography with micro-electro-capture detector was also evaluated. Columns with different polarity and selectivity, including ZB-5, HT-8 and DB-17, were assayed as first dimension and combined with columns of increasing polarity in the second dimension, i.e. HT-8, BPX-50 and Supelcowax-10. The best results for real-life samples after treatment by the proposed miniaturised method were achieved with ZB-5 × BPX-50 column combination. The low limits of detection achieved with this technique (in general, below 0.56 μg/kg) proved its suitability for accurate monitoring of the pesticides classes included in the study at the maximum residue levels set in the European Union.  相似文献   

6.
A kinetic spectrophotometric method for the simultaneous determination of iodate and periodate in mixtures was proposed. The method is established on the different kinetic behaviours of the analytes which react with starch–iodide in the presence of sodium chloride in sulfuric acid medium. The kinetic data were collected from 260 to 900 nm every 10 nm, within a time range of 0–180 s at 1 s interval, and the absorbance collected at 291, 354 and 585 nm, respectively, increased linearly with the concentration between 0.1–1.2 mg L− 1 for both iodate and periodate. The mechanism investigation revealed that the iodate/periodate–iodide–starch system is a consecutive reaction. Subsequently, the mathematical model for the quantitative kinetic determination based on the consecutive reactions by utilizing chemometric methods was deduced, and the simultaneous determination of synthetic mixtures of iodate and periodate was then applied. Kinetic data collected at 291, 354 and 585 nm, were processed by chemometric methods, such as classical least square (CLS), principal component regression (PCR), partial least square (PLS), back-propagation artificial neural network (BP-ANN), radial basis function–artificial neural network (RBF-ANN) and principle component–radial basis function–artificial neural network (PC-RBF-ANN). The results showed that calibration model with the data collected at 354 nm had some advantages for the prediction of the analytes as compared with the ones of other two wavelengths, and the PLS and PC-RBF-ANN gave the lower prediction errors than other chemometric methods. The proposed method was applied to the simultaneous determination of iodate and periodate in several real samples; and the standard addition method yielded satisfactory recoveries in all instances.  相似文献   

7.
A differential kinetic spectrophotometric method was researched and developed for the simultaneous determination of iron and aluminium in food samples. It was based on the direct reaction kinetics and spectrophotometry of these two metal ions with Chrome Azurol S (CAS) in ethylenediamine-hydrochloric acid buffer (pH 6.3). The results were interpreted with the use of chemometrics. The kinetic runs and the visible spectra of the complex formation reaction were studied between 540 and 750 nm every 30 s over a total period of 285 s. A set of synthetic metal mixture samples was used to build calibrations models. These were based on the spectral and kinetic two-way data matrices, which were processed separately by the radial basis function-artificial neural network (global RBF-ANN) method. The prediction performance of these models was poorer than that from the combined kinetic-spectral three-way array, which was similarly processed by the same method (% relative prediction error (RPET) = 5.6). These results demonstrate that improved predictions can be obtained from the data array, which has more information, and that appropriate chemometrics methods can enhance analytical performance of simple techniques such as spectrophotometry.Other chemometrics models were then applied: N-way partial least squares (NPLS), parallel factor analysis (PARAFAC), back propagation-artificial neural network (BP-ANN), single radial basis function-artificial neural network (RBF-ANN), and principal component neural network (PC-RBF-ANN). There was no substantial difference between the methods with the overall %RPET range being 5.0-5.8. These two values corresponded to the NPLS and BP-ANN models, respectively. The proposed method was applied for the determination of iron and aluminium in some commercial food samples with satisfactory results.  相似文献   

8.
In the present work, a novel approach is proposed for the simultaneous determination of three widely used pesticides (namely, fuberidazole (FBZ), carbaryl (CBL) and benomyl (BNM)). The proposed method is based on a single continuous-flow solid surface fluorimetric multi-optosensor implemented with the use of a minicolumn placed just before the flow-through cell and filled with C18 silica gel. The three pesticides are determined from an only injection (simultaneous determination): the minicolumn strongly retains two of them while the third develops a transitory signal when passing through the sensing solid microzone. Then, two alternate eluting solutions appropriately selected perform the sequential elution of the two pesticides from the minicolumn, achieving the detection zone and developing their transitory signals. The proposed optosensor works under optimal sensitivity conditions for all the three analytes because of the use of multi-wavelength fluorescence detection mode, so recording three different signals corresponding at three pairs of optima excitation/emission wavelengths. Using a sample volume of 2100 μl, the system was calibrated in the range 0.5-15, 40-800 and 50-1000 μg l−1 with detection limits of 0.09, 6 and 9 μg l−1 for FBZ, CBL and BNM, respectively. The R.S.D values (n=10) were lower than 2% in all cases. The proposed methodology was applied satisfactorily to water samples. Recovery percentages ranging from 97.8 to 101.1%, 97.9 to 103% and from 97 to 105% for FBZ, CBL and BNM, respectively, were obtained.  相似文献   

9.
A novel alternative for the simultaneous determination of compounds with similar structure is described, using the whole chemiluminescence-time profiles, acquired by the stopped-flow technique, in combination with mathematical treatments of multivariate calibration. The proposed method is based on the chemiluminescent oxidation of morphine and naloxone by their reaction with potassium permanganate in an acidic medium, using formaldehyde as co-factor. The whole chemiluminescence-time profiles, acquired using the stopped-flow technique in a continuous-flow system, allowed the use of the time-resolved chemiluminescence (CL) data in combination with multivariate calibration techniques, as partial least squares (PLS), for the quantitative determination of both opiate narcotics in binary mixtures.In order to achieve overcoat the additivity of the CL profiles and beside to obtain CL profiles for each drug the most separated as possible in the time, the optimum chemical conditions for the CL emission were investigated. The effect of common emission enhancers on the CL emission obtained in the oxidation reaction of these compounds in different acidic media was studied. The parameters selected were sulphuric acid 1.0 mol L−1, permanganate 0.2 mmol L−1 and formaldehyde 0.8 mol L−1. A calibration set of standard samples was designed by combination of a factorial design, with three levels for each factor and a central composite design. Finally, with the aim of validating the chemometric proposed method, a prediction set of binary samples was prepared. Using the multivariate calibration method proposed, the analytes were determined in synthetic samples, obtaining recoveries of 97-109%.  相似文献   

10.
A new sensor for simultaneous determination of peroxyacetic acid and hydrogen peroxide using silver nanoparticles (Ag-NPs) as a chromogenic reagent is introduced. The silver nanoparticles have the catalytic ability for the decomposition of peroxyacetic acid and hydrogen peroxide; then the decomposition of them induces the degradation of silver nanoparticles. Hence, a remarkable change in the localized surface plasmon resonance absorbance strength could be observed. Spectra-kinetic approach and artificial neural network was applied for the simultaneous determination of peroxyacetic acid and hydrogen peroxide. Linear calibration graphs were obtained in the concentration range of (8.20 × 10−5 to 2.00 × 10−3 mol L−1) for peroxyacetic acid and (2.00 × 10−5 to 4.80 × 10−3 mol L−1) for hydrogen peroxide. The analytical performance of this sensor has been evaluated for the detection of simultaneous determination of peroxyacetic acid and hydrogen peroxide in real samples.  相似文献   

11.
In this paper we proposed a reverse high performance liquid chromatography method for the simultaneous determination of three N-methylcarbamates (NMCs) named carbofuran, carbaryl and methiocarb, using the post-column chemiluminescence (CL) detection with the luminol reaction. This method is based on the enhancing effect of these analytes on the CL emission generated by the oxidation of luminol with potassium permanganate in alkaline medium. The separation was reached in less than 14 min using a C18 column and an isocratic binary mobile phase consisting of acetonitrile:water (50:50, v/v) pumped at a flow rate of 1 mL min−1. CL reagents (luminol and KMnO4) were incorporated by means of a peristaltic pump and were firstly mixed using a three-way connector. Then this stream was mixed with the eluate using another three-way connector just before reaching the detection cell. The optimization of variables affecting the CL reaction (reaction medium, concentration, flow rate of reagents and distance between both connectors) were optimized by means of experimental designs. Ethiofencarb, a NMC which has nowadays fallen into disuse was used as internal standard. For the analysis of theses pesticides in real water samples a pre-treatment step consisting of solid phase extraction (SPE) was conducted in order to reach sensitivity levels below the legal maximum concentration permitted. In the case of vegetable sample, SPE was used for matrix cleaning purpose.  相似文献   

12.
In this work, a novel flow-through solid-phase based chemiluminescence (CL) optical sensor is described for the trace determination of orthophosphate in waters exploiting the multisyringe flow injection analysis (MSFIA) concept with multicommutation. The proposed time-based injection flow system relies upon the in-line derivatisation of the analyte with ammonium molybdate in the presence of vanadate, and the transient immobilisation of the resulting heteropolyacid in a N-vinylpyrrolidone/divinylbenzene copolymer packed spiral shape flow-through cell located in front of the window of a photomultiplier tube. The simultaneous injection of well-defined slugs of luminol in alkaline medium and methanol solution towards the packed reactor is afterwards performed by proper switching of the solenoid valves. Then, the light emission from the luminol oxidation by the oxidant species retained onto the sorbent material is readily detected. At the same time, the generated molybdenum-blue compound is eluted by the minute amount of injected methanol, rendering the system prepared for a new measuring cycle. Therefore, the devised sensor enables the integration of the solid-phase CL reaction with elution and detection of the emitted light without the typical drawbacks of the molybdenum-blue based spectrophotometric procedures regarding the excess of molybdate anion, which causes high background signals due to its self-reduction. The noteworthy features of the developed CL-MSFIA system are the feasibility to accommodate reactions with different pH requirements and the ability to determine trace levels of orthophosphate in high silicate content samples (Si/P ratios up to 500). Under the optimised conditions, a dynamic linear range from 5 to 50 μg P l−1 for a 1.8 ml sample, repeatability better than 3.0% and a quantification limit of 4 μg P l−1 were attained. The flowing stream system handles 11 analysis h−1 and has been successfully applied to the determination of trace levels of orthophosphate in environmental samples such as mineral, ground, tap and pond waters as well as samples from a water-steam cycle of an incineration plant. The t-test comparison of the means for the developed optical sensor and the molybdenum-blue spectrophotometric APHA/AWWA/WPCF reference method revealed that there is no evidence of significant differences between the obtained results at the 95% confidence level.  相似文献   

13.
An effective extraction method was devised for the determination of organophosphorus pesticides (OPPs) in olive and avocado oil samples, using atmospheric pressure microwave-assisted liquid–liquid extraction (APMAE) and solid-phase extraction or low-temperature precipitation as clean-up step. A simple glass system equipped with an air-cooled condenser was designed as an extraction vessel. The pesticides were partitioned between acetonitrile and oil solution in hexane. Analytical determinations were carried out by gas chromatography-flame photometric detection and gas chromatography–tandem mass spectrometry, using a triple quadrupole mass analyzer, for confirmation purposes. Several factors influencing the extraction efficiency were investigated and optimized through fractional factorial design and Doehlert design. Under optimal conditions the recovery of pesticides from oil at 0.025 μg g−1 ranged from 71% to 103%, except for fenthion in avocado oil, with RSDs ≤13% (n = 5). The LOQ for the entire method ranged from 0.004 to 0.015 μg g−1. Finally, the proposed method was successfully applied to the extraction and determination of the selected pesticides in 20 commercially packed extra virgin olive oils and four commercially packed avocado oils produced in Chile. Detectable residues of different OPPs were observed in 85% of samples.  相似文献   

14.
建立了高效液相色谱串联质谱法检测栀子中11种有机磷农药残留量的分析方法。样品以乙腈为提取溶剂,采用超声波辅助提取,经Carb/PSA固相萃取柱净化,液质联用仪测定。11种有机磷农药在125~2 000μg/L范围内线性良好,相关系数为0.9955~0.9998。在50、100、500μg/kg 3个添加水平的平均加标回收率为84%~107%,相对标准偏差为1.4%~10.9%。  相似文献   

15.
A new, simple and cost-effective method based on the use of multi-walled carbon nanotubes (MWCNTs) as solid-phase extraction stationary phases is proposed for the determination of a group of seven organophosphorus pesticides (i.e. ethoprophos, diazinon, chlorpyriphos-methyl, fenitrothion, malathion, chlorpyriphos and phosmet) and one thiadiazine (buprofezin) in different kinds of soil samples (forestal, ornamental and agricultural) using gas chromatography with nitrogen phosphorus detection. Soils were first ultrasound extracted with 10 mL 1:1 methanol/acetonitrile (v/v) and the evaporated extract redissolved in 20 mL water (pH 6.0) was passed through 100 mg of MWCNTs of 10-15 nm o.d., 2-6 nm i.d. and 0.1-10 μm length. Elution was carried out with 20 mL dichloromethane. The method was validated in terms of linearity, precision, recovery, accuracy and selectivity. Matrix-matched calibration was carried out for each type of soil since statistical differences between the calibration curves constructed in pure solvent and in the reconstituted soil extract were found for most of the pesticides under study. Recovery values of spiked samples ranged between 54 and 91% for the three types of soils (limits of detection (LODs) between 2.97 and 9.49 ng g−1), except for chlorpyrifos, chlorpyrifos-methyl and buprofezin which ranged between 12 and 54% (LODs between 3.14 and 72.4 ng g−1), which are the pesticides with the highest soil organic carbon sorption coefficient (KOC) values. Using a one-sample test (Student's t-test) with fortified samples at two concentration levels in each type of soil, no significant differences were observed between the real and the experimental values (accuracy percentages ranged between 87 and 117%). It is the first time that the adsorptive potential of MWCNTs for the extraction of organophosphorus pesticides from soils is investigated.  相似文献   

16.
In the past few years, organophosphorus compounds become one of the most widely used classes of pesticides due to their acute toxicity against a wide variety of pests. In this work, a method based on solid-phase microextraction in mode headspace (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was developed and optimized through multivariate factorial design to determine residues of organophosphorus pesticides in cow's milk. Different parameters of the method were evaluated, such as fiber type, temperature, extraction and desorption times, sample volume, effect of salt addition and stirring velocities. The evaluated pesticides were dichlorvos, sulfotep, demeton-S, dimpylate, disulfoton, parathion, methyl parathion, fenitrothion, chlorpyrifos and ethion. The best results were obtained using polydimethylsiloxane/divinylbenzene fiber and headspace mode at 90 °C for 45 min, along with stirring at 600 rpm and desorption for 5 min at 250 °C. Under the optimized conditions, the proposed methodology was able to determine all of the pesticides with variation coefficients between 6.1% and 29.5%. Detection and quantification limits ranged from 2.16 to 10.85 μg L− 1 and from 6.5 to 32.9 μg L− 1, respectively. To evaluate residues of these pesticides in milk, cows were exposed to the pesticides of interest and milk was collected after 24 h. The developed method was able to detect trace amounts of these pesticides in the collected milk samples.  相似文献   

17.
A rapid method for the simultaneous identification and quantification of pesticide residues in edible seaweed has been developed. Target analytes were three pyrethroid, a carbamate and two organophosphorus pesticides. The procedure consists of a pressurized liquid extraction (PLE) with integrated clean-up, followed by gas chromatography coupled to tandem mass spectrometry. Five PLE parameters were investigated using a screening design: temperature, static extraction time, number of cycles, percent of flush volume and quantitative composition of the n-hexane/ethyl acetate extraction solvent. The effect of the in-cell clean-up with Florisil® and graphitized carbon black adsorbents was investigated using a Doehlert response surface design. Large volumes of sample extracts were injected using a programmed-temperature vaporizer (PTV-LVI) to improve both sensitivity and selectivity of measurements. Quantification was carried by the internal standard method with surrogate deuterated standards. The method showed excellent linearity (R2 > 0.999) and precision (relative standard deviation, RSD ≤ 8%) for all compounds, with detection limits ranging from 0.3 pg g−1 for chlorpyrifos-ethyl, to 3.0 pg g−1 for carbaryl (23.1 pg g−1 for deltamethrin). Recoveries in real seaweed samples were within the range 82–108%. The method was satisfactory validated for the analysis of wild and cultivated edible seaweeds. The presence of pyrethroid and organophosphorus pesticides in some of the samples was evidenced.  相似文献   

18.
Ni Y  Cao D  Kokot S 《Analytica chimica acta》2007,588(1):131-139
A sensitive and selective enzymatic kinetic method for the simultaneous determination of mixtures of carbaryl and phoxim pesticides was researched and developed. It was based on the inhibitory effect of the pesticides on acetylcholinesterase (AChE), and the use of 5,5′-dithiobis(2-nitrobenzoic) acid (DTNB) as a chromogenic reagent for the thiocholine iodide (TChI) released from the acetylthiocholine iodide (ATChI) substrate. The DTNB-thiocholine reaction was investigated by a spectrophotometric-kinetic approach. The complex rate equation for the formation of the chromogenic product, P, was solved under certain experimental conditions, which enabled the absorbance (AP, at λmax = 412 nm) from the mixtures of the two pesticide inhibitors to be directly related to their concentrations provided the absorbance additivity was followed. The spectra were measured for mixtures of carbaryl and phoxim at different concentrations, and at t = 904 s, T = 35 °C, pH = 7.5, cATChI = 0.14, and cAChE = 0.10 mg mL−1. The detection limits of the enzymatic kinetic spectrophotometric procedures for the determination of the carbaryl and phoxim were 4.7 and 0.59 μg L−1, respectively.Calibration models for chemometrics methods, such as principal component regression (PCR), partial least squares (PLS) and radial basis function-artificial neural network (RBF-ANN) were constructed and verified with synthetic samples of the mixtures of the two pesticides. The best performing model was based on the RBF-ANN method yielding at approximately 10 ppb analyte concentrations, %RPET (carbaryl = 5.2; phoxim = 6.5), %Recovery (approx.105%) and %RPET (6.5). Various spiked town-water samples produced recoveries in the range of 98.8-103% for each pesticide.  相似文献   

19.
A method based on solid-phase microextraction and gas chromatography flame photometric detector for the determination of organophosphorus pesticides (OPPs) in food samples was described. Three kinds of vinyl crown ether polar fibers were prepared with sol-gel process and used for the analytes. The new coatings showed higher extraction efficiency and sensitivity for organophosphorus pesticides compared with commercial fibers—85 μm PA and 65 μm PDMS-DVB. Specifically, the benzo-15-crown-5 coating was the most effective for the target analytes. Several factors affecting the performance of SPME such as extraction temperature and time, salt addition, and dilution ratios of samples were optimized. The apparent recoveries of spiked food samples (apple juice, apple and tomato) were determined to be over 55.3% and the limits of detection (LODs) were in the range of 0.003-0.09 ng/g for the OPP studied. The method was applied to determine the concentrations of OPP in real food samples.  相似文献   

20.
Yongnian Ni  Yong Wang 《Talanta》2009,78(2):432-749
This paper describes a simple and sensitive kinetic spectrophotometric method for the simultaneous determination of Amaranth, Ponceau 4R, Sunset Yellow, Tartrazine and Brilliant Blue in mixtures with the aid of chemometrics. The method involved two coupled reactions, viz. the reduction of iron(III) by the analytes to iron(II) in sodium acetate/hydrochloric acid solution (pH 1.71) and the chromogenic reaction between iron(II) and hexacyanoferrate(III) ions to yield a Prussian blue peak at 760 nm. The spectral data were recorded over the 500-1000 nm wavelength range every 2 s for 600 s. The kinetic data were collected at 760 nm and 600 s, and linear calibration models were satisfactorily constructed for each of the dyes with detection limits in the range of 0.04-0.50 mg L−1. Multivariate calibration models for kinetic data were established and verified for methods such as the Iterative target transform factor analysis (ITTFA), principal component regression (PCR), partial least squares (PLS), and principal component-radial basis function-artificial neural network (PC-RBF-ANN) with and without wavelet packet transform (WPT) pre-treatment. The PC-RBF-ANN with WPT calibration performed somewhat better than others on the basis of the %RPET (∼9) and %Recovery parameters (∼108), although the effect of the WPT pre-treatment was marginal (∼0.5% RPET). The proposed method was applied for the simultaneous determination of the five colorants in foodstuff samples, and the results were comparable with those from a reference HPLC method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号