首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel integrated chemiluminescence (CL) flow sensor for the determination of adrenaline and isoprenaline is developed based on the enhancing effect of analytes on CL emission of luminol oxidized by periodate in alkaline solution. The analytical reagents luminol and periodate are immobilized on anion exchange resins, respectively, and packed in a glass tube to construct a reagentless sensor. The proposed sensor allows the determination of adrenaline and isoprenaline over the range from 2.0×10−8 to 1.0×10−5 g ml−1 and 2.0×10−7 to 5.0×10−5 g ml−1, respectively. The detection limits are 7.0×10−9 g ml−1 for adrenaline and 5.0×10−8 g ml−1 for isoprenaline with a relative standard deviation of 1.7% for the 1.0×10−7 g ml−1 adrenaline (n=11) and 2.1% for 1.0×10−6 g ml−1 isoprenaline (n=11). The sample throughput was 60 samples h−1. The sensor has been successfully applied to the determination of adrenaline and isoprenaline in pharmaceutical preparations.  相似文献   

2.
A chemiluminescence (CL) flow system for determination of thyroxine (Thy) is presented. It is based on the catalytic effect of cobalt(II) on the CL reaction between luminol and hydrogen peroxide. The iodinated chemical structure of Thy causes a heavy atom effect. The luminol CL signals show significant quenching by Thy. The calibration graph for Thy is linear for 15-70 μg ml−1 and the 3σ detection limits are 27 μg ml−1 for d-Thy and 23 μg ml−1 for l-Thy.  相似文献   

3.
A sensitive and selective flow injection chemiluminescence (CL) method combined with controlled potential electrolysis technique was described for the determination of molybdenum. The method is based on the chemiluminescence reaction of luminol with unstable molybdenum(III) in alkaline solution. The molybdenum(III) was on-line reduced from molybdenum(VI) via controlled potential electrolysis technique using a homemade flow-through carbon electrolytic cell at the potential of −0.6 V (versus Ag/AgCl). The method allows the determination of molybdenum in the 5.0×10−10 to 5.0×10−7 g ml−1 range with a limit of detection (3σ) of 5×10−11 g ml−1 molybdenum. The relative standard deviation is 2.6% for the 1.0×10−9 g ml−1 molybdenum solution in 11 repeated measurements. This method was successfully applied to the determination of molybdenum in water samples.  相似文献   

4.
A multi-pumping flow system (MPFS) for the spectrophotometric determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples is proposed. The determination of orthophosphate is based on the vanadomolybdate method. In-line ultraviolet photo-oxidation is employed to mineralise organic phosphorus to orthophosphate prior to detection. A solenoid valve allows the deviation of the flow towards the UV-lamp to carry out the determination of organic phosphorus.Calibration was found to be linear up to 20 mg P L−1, with a detection limit (3sb/S) of 0.08 mg P L−1, an injection throughput of 75 injections h−1 and a repeatability (R.S.D.) of 0.6% for the direct determination of orthophosphate. On the other hand, calibration graphs were linear up to 40 mg P L−1, with a detection limit (3sb/S) of 0.5 mg P L−1, an injection throughput of 11 injections h−1 and a repeatability (R.S.D.) inferior to 2.3% for the procedures involving UV photo-oxidation.  相似文献   

5.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

6.
The simultaneous spectrophotometric determination of phosphate and silicate ions in river water was examined by using ion-exclusion chromatography and post-column derivatization. Phosphate and silicate ions were separated by the ion-exclusion column packed with a polymethacrylate-based weakly acidic cation-exchange resin in the H+-form (TSKgel Super IC-A/C) by using ultra pure water as an eluent. After the post-column derivatization with molybdate and ascorbic acid, so-called molybdenum-blue, both ions were determined simultaneously by spectrophotometry. The effects of sulfuric acid, sodium molybdate and ascorbic acid concentrations and reaction coil length, which have relation to form the reduced complexes of molybdate and ions, on the detector response for phosphate and silicate ions were investigated. Under the optimized conditions (color-forming reactant, 50 mM sulfuric acid-10 mM sodium molybdate; reducing agent, 50 mM ascorbic acid; reaction coil length, 6 m), the calibration curves of phosphate and silicate ions were linear in the range of 50-2000 μg L−1 as P and 250-10,000 μg L−1 as Si. This method was successfully applied to water quality monitoring of Kurose-river watershed and it suggested that the effluent from a biological sewage treatment plant was significant source of phosphate ion in Kurose-river water.  相似文献   

7.
A kinetic spectrophotometric procedure was developed for determination of submicromolar orthophosphate based on the reaction in which orthophosphate serves as a catalyst in the reduction of molybdenum, and the initial rate of molybdenum-blue formation (λmax = 780 nm) is proportional to the concentration of orthophosphate in the samples. The detection limit (3 × standard deviation of blank, n = 8) was 6 nM and the linear calibration ranged from 10 to 100 nM (r2 = 0.997). The precisions of this method were 3.3% at 10 nM and 5.4% at 50 nM (n = 8), respectively. Similar to other molybdate based methods, silica and arsenate in the samples can interfere with phosphate determination. The responses of silicate and arsenate were about 25% and 7% of that of orthophosphate, respectively, and their interferences were enhanced in the presence of phosphate in the samples due to the synergistic effect of phosphate with arsenate or silicate on the molybdate reagent.  相似文献   

8.
The development and evaluation of a portable flow analysis system for the in situ determination of total phosphorus is described. The system has been designed with rapid underway monitoring in mind. The system employs an ultra-violet photo-reactor and thermal heating for peroxodisulfate digestion of total phosphorus to orthophosphate, followed by spectrophotometric detection with a multi-reflective flow cell and low-power light emitting diode using the molybdenum blue method. Reagents are stored under gas pressure and delivered using software controlled miniature solenoid valves. The fully automated system has a throughput of 115 measurements per hour, a detection limit of 1 μg P L−1, and gives a linear response over the calibration range of 0-200 μg P L−1 (r2 = 0.9998), with a precision of 4.6% RSD at 100 μg P L−1 (n = 10). Field validation of the instrument and method was performed in Port Philip and Western Port Bays in Victoria, SE Australia, where 2499 analyses were performed over a 25 h period, over a cruise path of 285 km. Good agreement was observed between determinations of samples taken manually and analysed in the laboratory and those measured in situ with the flow analysis system.  相似文献   

9.
This work reports a novel flow injection (FI) method for the determination of captopril, 1-[(2S)-3-mercapto-2-methylpropionyl]-l-proline (CPL), based on the enhancement CPL affords on the chemiluminescence (CL) reaction between luminol and hydrogen peroxide. For this purpose alkaline luminol and hydrogen peroxide solutions were mixed online, the sample containing CPL was injected into an aqueous carrier stream, mixed with the luminol-hydrogen peroxide stream and pumped into a glass flow cell positioned in front of a photomultiplier tube (PMT). The increase in the CL intensity was recorded in the form of FI peaks, the height of which was related to the CPL mass concentration in the sample. Different chemical and instrumental parameters affecting the CL response were investigated. Under the selected conditions, the log-log calibration curve was linear in the range 5-5000 μg l−1 of CPL, the limit of detection was 2 μg l−1 (at the 3σ level), the R.S.D., sr was 3.1% at the 100 μg l−1 level (n=8) and the sampling rate was 180 injections h−1. The method was applied to the determination of CPL in pharmaceutical formulations with recoveries in the range 100±3%.  相似文献   

10.
A novel enzyme reactor with co-immobilization of β-galactosidase and glucose oxidase in calcium alginate fiber (CAF) and amine modified nanosized mesoporous silica (AMNMS) was prepared which incorporate the adsorption and catalysis of AMNMS with the cage effect of the polymer to increase catalytic activity and stability of immobilized enzyme. The enzyme reactor was applied to prepare a chemiluminescence (CL) flow-through biosensor for determination of lactose combined with a novel luminol-diperiodatonickelate (DPN) CL system we reported. It shows that the CL flow-through biosensor possesses long lifetime, high stability, high catalytic activity and sensitivity. The relative CL intensity was linear with the lactose concentration in the range of 8 × 10−8-4 × 10−6 g mL−1 with the detection limit of 2.7 × 10−8 g mL−1 (3σ). It has been successfully applied to the determination of lactose in milk.  相似文献   

11.
Chemiluminescence (CL) was observed when potassium hexacyanoferrate(III) reacted with the mixture of calcein and ketotifen. Interestingly, the CL intensity would be enhanced by trace amounts of Mg2+ and the CL intensity was strongly dependent on ketotifen concentration. Based on this phenomenon, a flow injection CL method was established for the determination of ketotifen. The possible CL mechanism is proposed based on the kinetic characteristic of the CL reaction, CL spectrum, ultraviolet (UV) spectra and fluorescent spectra. The CL intensity was correlated linearly with concentration of ketotifen over the range of 6.0 × 10−9 to 2.0 × 10−7 g mL−1 and the detection limit was 3 × 10−9 g mL−1. The relative standard deviation was 1.8% for 2.0 × 10−8 g mL−1 ketotifen (n = 11). This method was applied to the determination of ketotifen in the tablets successfully.  相似文献   

12.
A sensitive chemiluminescence (CL) method, based on the enhancive effect of cobalt(II) on the CL reaction between luminol and dissolved oxygen in a flow injection (FI) system, was proposed for determination of Vitamin B12. The increment of the CL intensity was proportional to the concentration of Vitamin B12, giving a calibration graph linear over the concentration from 2.0×10−10 to 1.2×10−6 g l−1 (r2=0.9992) with the detection limit of 5.0×10−11 g l−1 (3σ). At a flow rate of 2.0 ml min−1, a complete determination of Vitamin B12, including sampling and washing, could be accomplished in 0.5 min with the relative standard deviations (R.S.D.) of less than 5.0%. The proposed method was applied successfully to the determination of Vitamin B12 in pharmaceuticals, human serum, egg yolk and fish tissue.  相似文献   

13.
Yu C  Liu G  Zuo B  Tang Y  Zhang T 《Analytica chimica acta》2008,618(2):204-209
A cataluminescence (CTL) sensor using Al2O3 nanowires as the sensing material was developed for the determination of trace pinacolyl alcohol in air samples based on the catalytic chemiluminescence (CL) of pinacolyl alcohol on Al2O3 nanowires. Eight catalysts were examined and the CL intensity on Al2O3 nanowires prepared by supercritical fluid drying was the strongest. This novel CL sensor showed high sensitivity and selectivity to gaseous pinacolyl alcohol at optimal temperature of 340 °C. Quantitative analysis was performed at a wavelength of 460 nm. The linear range of CTL intensity versus concentration of gaseous pinacolyl alcohol was 0.09 × 10−6 to 2.56 × 10−6 g mL−1 (r = 0.9983, n = 6) with a detection limit (3σ) of 0.0053 × 10−6 g mL−1. None or only very low levels of interference were observed while the foreign substances such as water vapor, ethanol, ammonia, chloroform, benzene, nitrogen dioxide, methylbenzene, hydrochloric acid, methanol and butanol were passing through the sensor. The response time of the sensor is less than 100 s, and the sensor had a long lifetime more than 60 h. The sensor would be potentially applied to analysis of the nerve agents such as Soman.  相似文献   

14.
A simple flow-based procedure with chemiluminescence (CL) detection is proposed for bromide ion determination in seawater. The procedure was based on the oxidation of bromide to bromine by chloramine-T followed by the reaction of bromine with luminol resulting in CL emission. Since no significant reaction within chloramine-T and luminol was observed, the detection was carried out without bromine extraction from the oxidant medium. The proposed flow system had a sampling rate of 40 determinations per hour, reagents consumption of 100 μg luminol and 60 μg chloramine-T per determination, a limit of detection of 0.5 mg l−1 bromide ions, a linear concentration range (r = 0.999 and n = 7) between 0 and 100 mg l−1, and a coefficient of variance better than 2.5% (for 10 measurements of a 10 mg l−1 Br solution) were achieved. The analytical system was applied for the determination of bromide in seawater and estuarine-water samples, obtaining an analyte recovery ranging from 94 to 102% and comparing the results with a reference spectrophotometric method no significant difference was observed in 95% confidence level.  相似文献   

15.
A simple, fast chemiluminescence (CL) flow-injection (FI) method based on the reaction of luminol with KMnO4 in alkaline medium has been described for the direct determination of carbofuran. The method is based on the enhancing effect in the emission light from the oxidation of luminol produced in presence of carbofuran. The optimisation of instrumental and chemical variables influencing the CL response of the method has been carried out by applying experimental design, using the proposed flow-injection manifold. Under the optimal conditions, the CL intensity was linear for a carbofuran concentration over the range of 0.06-0.5 μg ml−1, with a detection limit of 0.02 μg ml−1. The method has been successfully applied to the determination of carbofuran residues in spiked water and lettuce samples.  相似文献   

16.
The development of a flow-through solid-phase room temperature phosphorescence (RTP) method for the sensitive determination of orthophosphate in aqueous samples, based on the energy transfer from a phosphor molecule (acting as a donor) to an orthophosphate dye-indicator (acting as an acceptor) is described.The proposed method, to our knowledge the first RTP optosensor for orthophosphate developed so far, is based on the injection in a flow system of 1 ml sample treated to form phosphomolybdenum blue from the orthophosphate. After injection, the phosphomolybdenum blue is on-line co-immobilised onto a polymeric resin containing adsorbed erythrosine B. This selected donor molecule exhibits strong RTP in a de-oxygenated aqueous media when retained on the surface of polymeric resin beads. Absorption spectra of the phosphomolybdenum blue possess a desirable spectral overlap with the emission spectra of the RTP donor and a non-radiative energy transfer occurs from the phosphor molecule to the acceptor dye. An increase in the concentration of orthophosphate of the solution causes an absorption increase of the acceptor (phosphomolybdenum blue) and, therefore, an increase in the energy transfer, which brings about a decrease of the RTP emission. After measurement, the active sensing phase can be regenerated by passing 2 ml of 2 M sodium hydroxide plus 2 ml of methanol. After the injection of 1 ml of 2×10−6 M erythrosine B the system is prepared again for a new sample injection.Potential interferences by ions present in natural waters, which could affect the optosensor response, and analytical performance characteristics of the RTP method are discussed in detail. An orthophosphate detection limit of 0.5 ng ml−1 (for 1 ml sample injection volume) was achieved. Finally, the selected RTP flow-through optical sensor has been successfully tested for the determination of orthophosphate in different water samples at a very few ng ml−1 levels.  相似文献   

17.
A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l−1 NH4Cl, 0.1 mol l−1 NaOH and 0.5 mol l−1 HCl as extractants according to the Hieltjes-Lijklema (HL) scheme for fractionation of phosphorus associated with different geological phases, and on-line processing of the extracts via the Molybdenum Blue (MB) reaction by exploiting multisyringe flow injection as the interface between the solid containing microcolumn and the flow-through detector. The proposed flow assembly, capitalizing on the features of the multicommutation concept, implies several advantages as compared to fractionation analysis in the batch mode in terms of saving of extractants and MB reagents, shortening of the operational times from days to hours, highly temporal resolution of the leaching process and the capability for immediate decision for stopping or proceeding with the ongoing extraction. Very importantly, accurate determination of the various orthophosphate pools is ensured by minimization of the hydrolysis of extracted organic phosphorus and condensed inorganic phosphates within the time frame of the assay. The potential of the novel system for accommodation of the harmonized protocol from the Standards, Measurement and Testing (SMT) Program of the Commission of the European Communities for inorganic phosphorus fractionation was also addressed. Under the optimized conditions, the lowest detectable concentration at the 3σ level was ≤0.02 mg P l−1 for both the HL and SMT schemes regardless of the extracting media. The repeatability of the MB assay was better than 2.5% and the dynamic linear range extended up to 7.0 mg P l−1 in NH4Cl and NaOH media and 15 mg P l−1 whenever HCl is utilized as extractant for both the HL and SMT protocols.  相似文献   

18.
Two highly sensitive chemiluminescence (CL) systems are described. The method is based on the CL generated during the oxidation of luminol by N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in alkaline medium. The emission intensity is reduced by the presence of some surfactants at concentrations lower than critical micelle concentration (cmc).A new, simple, rapid and selective flow injection CL method for the determination of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) is proposed. Their determinations are based on the reducing effect on the emission intensity of NBS-luminol and NCS-luminol chemiluminescent reactions. The effect of analytical and flow injection analysis (FIA) variables on these CL systems and on the determination of the cationic surfactants are discussed. The optimum parameters for the determination of cationic surfactants were studied and were found to be the following: luminol, 1×10−6 M; NBS and NCS both, 5×10−2 M; NaOH, 5×10−2 M and flow rate, 3.5 ml min−1.  相似文献   

19.
Thabano JR  Jens CT  Sawula GM 《Talanta》2004,64(1):60-68
Fabrication of a macro segmented flow analysis (MSFA) system based on reconfiguration of the manifold by adjustment of the sample/reagent ratio, has been found to produce a sensitive method for orthophosphate analysis based on colorimetric detection at 880 nm. Optimization of sample tube length, reaction temperature and molybdate concentration in the carrier solutions has been carried out. The larger sample tube internal diameter led to the combined advantages of better sensitivities, wider working range and higher sample throughput over most existing methods. Using the optimized conditions of 50.0 cm sample tube length (1.6 mm i.d.), 37.0 °C reaction temperature and 0.0113 M molybdate concentration in the carrier solution, the calibration model for orthophosphate standard solutions was found to be linear (y = 0.04895x + 0.003561; correlation coefficient, r2=0.9970) over the working range 0.01-2.00 mg l−1 orthophosphate. The volume of the sample injected was 1.396 ml at a flow rate of 6.0 ml min−1. The sample throughput of this MSFA method was 40 samples per an hour, with a detection limit of 4.0 μg l−1, and %R.S.D.’s below 5%. The MSFA method was successfully applied to analysis of water and wastewater samples.  相似文献   

20.
A novel, sensitive and high selective flow-injection chemiluminescence (FI-CL) method for the determination of phenol is reported, based upon its decreasing effect on the CL reaction of luminol with hydrogen peroxide catalyzed by manganese (III) deuteroporphyrin [MnDP, Scheme 1, 3] in alkaline solution. Under the selected optimized experimental conditions, the relative CL intensity was linear with phenol in the range of 4.0 × 10−9 to 4.0 × 10−7 g mL−1. The detection limit (3σ) was 6.3 × 10−10 g mL−1 and the relative standard deviation for 1.0 × 10−7 g mL−1 phenol (n = 11) was 2.99%. The regression equation was I = 120.79 + 1.14 × 1010c (R = 0.9936). This method has been applied to the determination of phenol in water with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号