首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
张安琪  邹建华  应磊  陈奇良  陈冰  杨伟  曹镛 《化学学报》2009,67(23):2745-2749
用Suzuki缩聚反应制备了一系列新型咔唑-吡啶共轭主链上含有金属铱配合物单元的共聚物. 共聚物发光器件结构为ITO/PEDOT:PSS/polymer+PBD (w=30%)/CsF/Al [氧化铟锡/苯磺酸掺杂聚乙烯基二氧噻吩/聚合物+2,4-二苯-5-4-叔丁基苯-1,3,4-恶二唑(w=30%)/氟化铯/铝]. 基于共聚物PCzPyIrMppy2的器件在电流密度为20.8 mA/cm2时, 最大外量子效率和流明效率分别达到4.1%和6.1 cd/A. 在电流密度200 mA/cm2时, 器件的最大外量子效率和流明效率仍分别达到3.2%和4.8 cd/A, 器件的发光的最大波长位于570 nm, 最大亮度达到13251 cd/m2. 研究结果表明, 在共轭聚合物主链上引入螯合金属铱配合单元是实现高效、稳定的电致磷光器件的有效方法之一.  相似文献   

2.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

3.
Electrochromic devices are fabricated by using polyaniline (PANI) doped with poly(styrene sulfonic acid) (PSS) as coloring electrodes, poly(ethylenedioxythiophene)‐poly(styrene sulfonic acid) (PEDOT‐PSS) as complementary electrodes, and hybrid polymer electrolytes as gel electrolytes. The device based on LiClO4‐based electrolyte (weight ratio of PMMA:PC:LiClO4 = 0.7:1.1:0.3) shows the highest optical contrast and coloration efficiency (333 cm2/C) after 1200 cycles in these devices, and the color changes from pale yellow (?0.5 V) to dark blue (+2.5 V). The spectroelectrochemical and electrochromic switching properties of electrochromic devices are investigated, the maximum optical contrast (ΔT%) of electrochromic device for ITO|PANI‐PSS‖PMMA‐PC‐LiClO4‐SiO2‖PEDOT‐PSS|ITO are 31.5% at 640 nm, and electrochromic device based on LiClO4‐based electrolyte with SiO2 shows faster response time than that based on LiClO4‐based electrolyte without SiO2.  相似文献   

4.
An organosilicate polymer, based on N,N'-diphenyl-N,N'-bis(4-((E)-2-(triethoxysilyl)vinyl)phenyl)biphenyl-4,4'-diamine (TEVS-TPD) with extended conjugation between the Si atom and the aromatic amine, was prepared under mild conditions via sequential Heck and sol-gel chemistry and used as an alternative to poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the most widely used planarizing hole injection/transport layer in solution-processed organic electronic devices. Spin-coating TEVS-TPD polymer solutions yield defect-free, uniform, thin films with excellent adhesion to the ITO electrode. Upon thermal cross-linking at 180 °C, the cross-linked polymer exhibits excellent solvent resistance and electrochemical stability. Solution-processed organic light emitting diode (OLED) devices using iridium-based triplet emitting layers and cross-linked TEVS-TPD films as a hole injection/transport layer show significantly improved performance including lower leakage current, lower turn-on voltage, higher luminance, and stability at high current density, as compared to the control device prepared with PEDOT:PSS.  相似文献   

5.
In this study, polymeric nanocomposites of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) and functionalized multi-walled carbon nanotubes (MWCNTs) were spin coated on a pre-patterned ITO glass and used as a hole conducting layer in organic photovoltaic cells. The multi-layered ITO/MWCNT-PEDOT:PSS/CuPc/C60/Al devices were fabricated to investigate the current density-voltage characteristics and power conversion efficiency. The power conversion efficiency obtained from the device with a concentration of 1.0 wt% MWCNT in the PEDOT:PSS layer was increased twice as those adopted from device without MWCNT doping in the PEDOT:PSS layer and current density-voltage characteristics was also improved well with incorporation of MWCNTs.  相似文献   

6.
在基于钙钛矿/富勒烯平面异质结的钙钛矿太阳电池中,PEDOT:PSS是最常使用的空穴传输材料. 但PEDOT:PSS呈酸性,会腐蚀金属氧化物透明电极,使器件的电极界面稳定性欠佳. 本文将高功函的氧化钨(WOx)插入到PEDOT:PSS和FTO之间,形成WOx/PEDOT:PSS复合空穴传输层,这样既可以避免PEDOT:PSS与FTO直接接触,提高器件的稳定性,又可以进一步降低电极界面的接触势垒,从而提升器件的性能. 作者研究了复合传输层对透光率、钙钛矿形貌、钙钛矿结晶、光伏性能及器件稳定性的影响. 基于WOx/PEDOT:PSS复合空穴传输层的电池效率可以达到12.96%,比单纯的PEDOT:PSS的电池效率(10.56%)提升了22.7%,同时器件的稳定性也得到大幅改善.  相似文献   

7.
刘智勇  徐文涛  王宁  杨小牛 《应用化学》2012,29(12):1423-1427
采用喷涂工艺制备了结构为ITO/ZnO/P3HT∶PCBM/V2O5/Ag(P3HT:聚噻吩;PCBM:6,6-苯基-C61-丁酸甲酯)的大面积倒置光伏器件,有效面积为1.0×1.1 cm2。 光谱测试结果表明,退火处理后,P3HT∶PCBM薄膜吸收显著增强,并且产生一定程度的红移。 采用ZnO和V2O5代替LiF和PEDOT∶PSS(聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸盐)作为器件修饰层,避免了PEDOT∶PSS对ITO的腐蚀和LiF潮解,采用Ag代替Al作为金属背电极避免了Al被氧化。 经过后退火处理器件的效率从1.1%提升至1.65%。 器件的稳定性相对于传统结构有了大幅提升,8周后器件效率只衰减10%。  相似文献   

8.
A novel conjugated poly[(fluorene‐2,7‐vinylene)‐alt‐(1,4‐phenylenevinylene)] derivative 2 with quaternizable tertiary amino groups was synthesized by Heck coupling of a substituted 2,7‐dibromofluorene and 1,4‐dialkoxy‐2,5‐divinylbenzene. The corresponding quaternary ammonium cationic polyelectrolyte 3 was obtained by the treatment of 2 with bromoethane. Both polymers were soluble in common organic solvents, like tetrahydrofuran, chloroform, and dichloromethane. Polymer 3 showed a limited solubility in alcohols and was insoluble in water. Photophysical and electrochemical properties of the resulting polymers were fully investigated. An intensive green photoluminescence (PL) with maxima at 550 and 545 nm was observed from thin films of 2 and 3 polymers, respectively, red‐shifted compared with the PL emission spectra measured in the solution. The electrochemical band gaps were 2.38–2.45 eV. Single‐layer and double‐layer (with poly[3,4‐(ethylenedioxy)thiophene]/poly (styrenesulfonate) (PEDOT:PSS)) light‐emitting devices (LEDs) with ITO and Al electrodes were prepared and studied. They emitted a green light and their electroluminescence (EL) spectra were similar to those of PL thin films. The external EL efficiency was determined to be 0.43 and 0.32% for ITO/PEDOT:PSS/ 2 /Al and ITO/PEDOT:PSS/ 3 /Al LEDs, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1016–1027, 2007  相似文献   

9.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

10.
Cui  Huiqin  Song  Wei  Fanady  Billy  Peng  Ruixiang  Zhang  Jianfeng  Huang  Jiaming  Ge  Ziyi 《中国科学:化学(英文版)》2019,62(4):500-505
Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid)(PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid(DMSO/MSA) treated PEDOT:PSS electrode,bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency(PCE) of 10.23% under 100 mW cm~(-2) illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.  相似文献   

11.
利用旋转涂膜法和真空镀膜法制备了以酞菁锂薄膜为工作层的有机光电器件, 结构为氧化铟锡/聚二氧乙基噻吩: 聚对苯乙烯磺酸/酞菁锂/聚偏氟乙稀/铝(ITO/PEDOT: PSS/LiPc/PVDF/Al). 在可见光和近红外脉冲激光照射下, 研究了器件的光电流极性. 在532 nm脉冲激光照射下, 器件的外电路光电流方向从ITO流向铝; 但在1064 nm脉冲激光照射下, 其外电路光电流极性发生反向, 即从铝流向ITO. 酞菁锂薄膜的吸收光谱和X射线衍射谱图显示, 其对可见和近红外光有非常广的吸收, 且为x晶型. 酞菁锂自由基的双极性特性可随入射光波长的变化而改变.  相似文献   

12.
Abstract

The conductivity of poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) film can be enhanced by more than two orders in magnitude by adding a compound with two or more polar groups, such as ethylene glycol (EG), meso‐erythritol (IUPAC name: 1,2,3,4‐tetrahydroxybutane), or 2‐nitroethanol, into the PEDOT:PSS aqueous solution. The mechanism of the increase in conductivity for PEDOT:PSS has been studied using Raman spectroscopy and atomic force microscope (AFM). Here we propose that the change in conductivity is due to the conformational change of PEDOT chains in the film. In untreated PEDOT:PSS films, coil, linear, or expanded‐coil conformations of the PEDOT chains may be present. In treated PEDOT:PSS films, the linear or expanded‐coil conformations may becomes the dominant form for PEDOT chains. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as the electrode for polymer optoelectronic devices. In this article, we report on the fabrication of polymer light‐emitting diodes (PLEDs) and photovoltaic cells (PVs) made using a highly conductive form of PEDOT:PSS as anode, and we demonstrate its performance relative to that of similar device using indium‐tin oxide (ITO) as the anode.  相似文献   

13.
The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material and the two electrodes indium-tin-oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H(2)(18)O and (18)O(2) enabled detailed information on where and to what extent uptake took place. A comparison was made between the use of a humid (oxygen-free) atmosphere and a dry oxygen atmosphere during testing of devices that were kept in the dark and devices that were subjected to illumination under simulated sunlight. It was found that the reactions taking place at the interface between the active layer and the PEDOT:PSS were the major cause of device failure in the case of these inverted devices, which are compatible with full roll-to-roll (R2R) coating and industrial manufacture. The PEDOT:PSS was found to phase separate, with the PEDOT-rich phase being responsible for most of the interface degradation in oxygen atmospheres. In water atmospheres, little chemically induced degradation was observed, whereas a large partially reversible dependence of the open circuit voltage on the relative humidity was observed. In addition, temporal aspects are discussed in regard to degradation mechanisms. Finally, analytical aspects in regard to storing devices are discussed.  相似文献   

14.
Conductive polymer (poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is an attractive platform for the design of flexible electronic, optoelectronic, and (bio)sensor devices. Practical application of PEDOT:PSS often requires an incorporation of specific molecules or moieties for tailoring of its physical–chemical properties. In this article, a method for covalent modification of PEDOT:PSS using arenediazonium tosylates was proposed. The procedure includes two steps: chemisorption of diazo‐cations on the PEDOT:PSS surface followed by thermal decomposition of the diazonium salt and the covalent bond formation. Structural and surface properties of the samples were evaluated by XPS, SEM‐EDX, AFM, goniometry, and a range of electric and optical measurements. The developed modification procedure enables tuning of the PEDOT:PSS surface properties such as conductivity and optical absorption. The possibility to introduce various organic functional groups (from hydrophilic to hydrophobic) and to create new groups for further functionalization makes the developed procedure multipurpose. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 378–387  相似文献   

15.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

16.
Phosphorescent heavy metal complexes can utilize both singlet and triplet excitons and thus are interesting for doping polymer to obtain highly efficient organic light-emitting diodes. In this study, we have investigated devices using a new phosphorescent–metal complex containing fluorene and platinum added to a luminescent polymer blend, composed of 2-(4-biphenylyl)-5-(4-tert-butyl-phenyl)-(1,3,4-oxadiazole) (PBD) and poly(9-vinylcarbazole) (PVK). The performance of devices (luminance and yield) is measured in indium tin oxide (ITO)/poly(3-4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/(PVK–PBD-complex)/Al diodes. The devices emit an orange light with a brightness of 607 cd/m2 and an external quantum efficiency of 0.28 cd/A at 25 V. In order to investigate the structural modifications of the polymer by the incorporation of phosphorescent–metal complex, we have studied the defect states in diodes by charge-based Deep Level Transient Spectroscopy (Q-DLTS). Analysis of Q-DLTS spectra obtained in undoped and doped devices, revealed at least three trap levels distributed in the range 0.2–0.5 eV within the band gap of the hybrid composite with trap density in the range around 1016 cm?3. Incorporation of Pt complex into the polymer blend modified the trap states by reducing the density of traps in the blend and by creating new trap levels in the band gap.  相似文献   

17.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

18.
骆开均  蒋世平  张藜芳  朱卫国  王欣 《应用化学》2011,28(10):1155-1160
在聚2,7-(9,9-二辛基)芴(PFO)和30%的2-(对联苯基)-5-(对叔丁基苯基)-1,3,4-噁二唑(PBD)主体材料中掺杂短磷光寿命的meso-四(对正葵酰氧基苯基)卟啉铂(TDPPPt),制成聚合物基发光器件。 器件结构为:ITO/PEDOT∶PSS/PVK/PFO+30%PBD∶TDPPPt/Ca/Al(ITO:氧化铟锡;PEDOT:聚3,4-乙撑二氧噻吩;PSS:聚苯乙烯磺酸盐;PVK:聚乙烯基咔唑)。 当客体掺杂浓度≥3%时,器件给出饱和的红色发射。 当驱动电压从7 V升高至14 V时,器件发光色度保持不变,CIE(国际发光照明委员会)色坐标稳定在(0.66,0.28)左右。 器件的最大亮度和电流效率分别为1.390 cd/m2和1.34 cd/A。 在电流密度100×10-3和150×10-3 A/cm2时,电流效率分别为1.18和0.99 cd/A,器件在高电流密度下具有良好的稳定性。  相似文献   

19.
Since limited examples are in the literature in which both organic light-emitting diodes (OLEDs) and electrochromic (EC) applications were performed using the same conjugated polymer, we presented comprehensive EC and electroluminescence (EL) studies of fluorene-based electroactive polymer (e.g., CFP6) consisting of a bicarbazole pendant moiety with quinoxaline as an acceptor bridge. CFP6 was synthesized by a Suzuki cross-coupling polymerization reaction and utilized as an active and emissive layers of the electrochromic device (ECD) and OLED, respectively, due to its high photoluminescence quantum yield intensity and fine thin film forming capability. The optical, electrochemical, cyclic voltammetry measurements, and density functional theory calculations were realized. Electrochemical cross-linking process was applied over the electroactive carbazole subunit of the CFP6 polymer. After the crosslinking process, EC performance was greatly improved. On the other hand, light emission and EL characteristics of OLEDs based on CFP6 emissive layer were realized in detail with six different device architectures to understand light output profile behavior. As a result, CFP6 emitted bright greenish yellow emission with a maximum brightness of 1777 cd/m2 at 215 mA/cm2 in the indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CFP6:%10 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP)/Alq3/LiF/Al device architecture.  相似文献   

20.
The stability of a common interface used in organic photovoltaic cells, between the transparent electrode of Indium Tin Oxide (ITO) and a buffer layer of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is strongly influenced by the presence of humidity during processing, leading to significant migration of indium and tin species into the PEDOT:PSS layer. The interface was studied using neutral impact collision ion scattering spectroscopy (NICISS) and X-ray photoelectron spectroscopy (XPS), to determine migration of indium and tin into the polymer layer. It was found that the migration starts almost instantly after spin coating of the aqueous PEDOT:PSS solution and it reaches a saturation level within twenty four hours. The indium and tin were found always uniformly distributed over the sampling depth of almost one-third of the thickness of the PEDOT:PSS layer. Exposure to humidity following annealing resulted in the highest concentration (1.8 × 10(-3) mol cm(-3)) of indium or tin species, corresponding to about one indium or tin moiety per 4.7 monomer units in the PEDOT:PSS. The maximum bulk concentration of indium is about two orders of magnitude higher after exposure to humid conditions compared to vacuum dried conditions. XPS measurements confirm the presence of both indium and tin in the PEDOT:PSS and the formation of salts with the metal ions as cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号