首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet‐chemistry approach. These liquid cells can feature van‐der‐Waals pressures up to 1 GPa, producing a miniaturized high‐pressure container for the crystallization in solution. The thickness of as‐received crystals is beyond the thermodynamic ultra‐thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near‐free‐standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous‐solution approaches of more metal‐oxide semiconductors with exotic phase structures and properties in graphene‐encapsulated confined cells.  相似文献   

2.
Crystallization and melting behavior are studied by small-angle X-ray scattering (SAXS) for a series of recently synthesized monotropic liquid crystalline polycarbonates based on α-methyl stilbene mesogen and methylene flexible spacer. The one-dimensional electron density correlation function is used to obtain long period, crystal thickness, and linear crystallinity from the Lorentz-corrected SAXS intensity. Changes in these parameters during nonisothermal crystallization and melting are explained by a model of dual crystal populations. The primary crystals form first using the liquid crystalline phase as crystal nuclei, while smaller and less perfect crystals form later from the isotropic phase at low temperature. The results of the real-time SAXS study of isothermal crystallization also support the view that the nematic phase serves as crystal nuclei for fast crystallization. An odd-even effect in crystal thickness and linear crystallinity is observed in all the SAXS experiments mentioned above. The results of this study and our complementary wide-angle X-ray scattering (WAXS) investigation show clearly that the difference in the position of the neighboring carbonate dipoles on a chain affects structural organization both at the unit cell level and at the level of the crystal in these monotropic LCPs. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
ABSTRACT

The two-dimensional graphene-honeycomb structure can interact with the liquid crystal’s (LC) benzene rings through π–π electron stacking. This LC–graphene interaction gives rise to a number of interesting physical and optical phenomena in the LC. In this paper, we present a combination of a review and original research of the exploration of novel themes of LC ordering at the nanoscale graphene surface and its macroscopic effects on the LC’s nematic and smectic phases. We show that monolayer graphene films impose planar alignment on the LC, creating pseudo-nematic domains (PNDs) at the surface of graphene. In a graphene-nematic suspension, these PNDs enhance the orientational order parameter, exhibiting a giant enhancement in the dielectric anisotropy of the LC. These anisotropic domains interact with the external electric field, resulting in a non-zero dielectric anisotropy in the isotropic phase as well. We also show that graphene flakes in an LC reduce the free ion concentration in the nematic media by an ion-trapping process. The reduction of mobile ions in the LC is found to have subsequent impacts on the LC’s rotational viscosity, allowing the nematic director to respond quicker on switching the electric field on and off. In a ferroelectric LC (smectic-C* phase), suspended graphene flakes enhance the spontaneous polarisation by improving the tilted smectic-C* ordering resulting from the π–π electron stacking. This effect accelerates the ferroelectric-switching phenomenon. Graphene can possess strain chirality due to a soft shear mode. This surface chirality of graphene can be transmitted into LC molecules exhibiting two types of chiral signatures in the LCs: an electroclinic effect (a polar tilt of the LC director perpendicular to, and linear in, an applied electric field) in the smectic-A phase, and a macroscopic helical twist of the LC director in the nematic phase. Finally, we show that a graphene-based LC cell can be fabricated without using any aligning layers and ITO electrodes. Graphene itself can be used as the electrodes as well as the aligning layers, obtaining an electro-optic effect of the LC inside the cell.  相似文献   

4.
A new and efficient method to produce a large quantity of high‐quality and non‐oxidized graphene flakes from powdered natural graphite by using a high‐intensity cavitation field in a pressurized ultrasonic reactor is demonstrated. TEM and selected‐area electron diffraction (SAED) confirmed the ordered graphite crystal structure of graphene. Atomic force microscopy (AFM) was used to examine the thickness of the graphene sheets. The delamination (exfoliation) of natural graphite in the liquid phase depends on the physical effects of ultrasound, which break down the 3D graphite structure into a 2D graphene structure. The prepared graphene is of high purity and without defects because no strongly oxidizing chemicals are used and no toxic products result. TEM shows that graphene nanosheets were produced with sizes in the range of tens to hundreds of square nanometers; these nanosheets were smooth and without any ripples and corrugations. High‐resolution TEM (HRTEM) and SAED analysis confirmed that the products were graphene nanosheets.  相似文献   

5.
利用石墨烯液体池技术,将液体水束缚在两层石墨烯之间,实现透射电子显微镜下纳米尺度液相反应的原位动态观察。通过对电子束的精确调控来控制水的辐解和凝结行为:若先在高电子剂量率下辐照液体,我们发现回到低剂量率后一系列纳米气泡在水中有序地析出并发生长大。界面反应是纳米气泡生长的限制因素,且新生的气泡的生长会抑制既有气泡的长大行为。进一步分析表明气泡内的气体处于致密的压缩态,体系内总的分子数随时间近似线性增加。而持续以相对适中的恒定电子剂量率作用,水辐解产生的气泡中又出现纳米水滴的凝结,并重复地长大/消失。该结果对于研究纳米限域环境下气/液界面反应等重要过程具有参考价值,同时有助于深入理解液体透射电镜下电子束效应对实验的影响。  相似文献   

6.
In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation.  相似文献   

7.
The graphene surface with the unpaired π electrons presents an ideal two‐dimensional electron system. Although the effective massless Dirac fermions are important, they are not the only carriers that describe the quantum transport in graphene. Above zero energy, the current carrying carriers in graphene are the usual electrons. This electron density may vary depending on the surface defects and π–σ interaction, and this may lead to a possible Wigner crystallization on the surface of graphene. Calculations for nonmagnetic, ferromagnetic, and antiferromagnetic Wigner crystals are carried out based on the Koster–Kohn variational principle for direct calculation of Wannier functions. The effect of positive background due to the carbon ions is suitably treated. From our results, we find that Wigner crystallization is possible in grapheme, if we consider the electrons on the surface, which obey quadratic dispersion relation. The electron crystal with ferromagnetic phase and face centered square lattice structure has the lowest energy. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

8.
应用化学分析、小角激光光散射与电子衍射以及X-射线衍射分析证实了NaY型沸石的形成遵循液相转变机理与形成过程中沸石骨架组成Si/Al此变化的非均一性。  相似文献   

9.
Large scale fractal graphene layers are obtained by complex method of liquid phase exfoliation and self-organization. Atomic force microscopy (AFM) is used to study the surface properties of formed layers and to assess their thickness. Surface potential of graphene and potential transition between the graphene and substrate is measured by Kelvin probe method. The influence of the effect of dielectric confinement on the optical properties of graphene is discussed in this work. Raman scattering spectra were used for structural analysis and assessment of the level of defects. Current-voltage characteristics of graphene ribbons were measured and discussed for different number of layers.  相似文献   

10.
Single crystals of poly(p-xylylene) were grown in dilute α-methylnaphthalene solution and studied by bright-field and high-resolution electron microscopy (HREM). The crystallization process was discussed in terms of the dependence of crystal form on crystallization conditions. A 0.15 nm resolution was achieved from high-resolution images of a frozen liquid crystalline phase. High-temperature electron diffraction patterns confirmed the existence of the liquid-crystalline phase in agreement with previous work of Lieser. The HREM images show the molecular packing in the smectic B phase. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
李忠明  陈晨 《高分子科学》2012,30(6):879-892
The effect of the different geometrical dimensionality of two dimensional graphene nanosheets(2D GNSs) and one dimensional carbon nanotubes(1D CNTs) on the non-isothermal crystallization of an ethylene-vinyl acetate(EVA) copolymer at high loading(5 wt%) was studied.Transmission electron microscopy indicated a homogeneous dispersion of GNSs and CNTs in EVA obtained by a solution dispersion process.Fourier-transform infrared spectroscopy and differential scanning calorimetry measurements showed that 1D CNTs and 2D GNSs acted as effective nucleating agents,with a noticeably increased onset crystallization temperature of EVA.A high weight fraction of nano-fillers slowed the overall crystallization rate of composites.At the same crystallization temperature,the crystallization behavior of GNS/EVA composites was slowed compared to that of the CNT/EVA ones owing to larger nucleus barrier and activation energy of diffusion.Dynamic mechanical relaxation and rheology behavior of CNT/EVA and GNS/EVA composites demonstrated that the planar structure of the GNSs had an intensively negative effect on EVA chain mobility due to interactions between nanofillers and polymer chains,as well as spatial restriction.  相似文献   

12.
The electron transport layer(ETL) plays an important role in planar heterojunction perovskite solar cell(PSCs),by affecting the light-harvesting, electron injection and transportation processes, and especially the crystallization of perovskite absorber. In this work, we utilized a commercial TKD-TiO_2 nanoparticle with a small diameter of 6 nm for the first time to prepare a compact ETL by spin coating. The packing of small-size particles endowed TKD-TiO_2 ETL an appropriate surface-wettability, which is beneficial to the crystallization of perovskite deposited via solution-processed method. The uniform and high-transmittance TKD-TiO_2 films were successfully incorporated into PSCs as ETLs. Further careful optimization of ETL thickness gave birth to a highest power conversion efficiency of 11.0%, which was much higher than that of PSC using an ETL with the same thickness made by spray pyrolysis. This TKD-TiO_2 provided a universal solar material suitable for the further large-scale production of PSCs. The excellent morphology and the convenient preparation method of TKD-TiO_2 film gave it an extensive application in photovoltaic devices.  相似文献   

13.
Nematic liquid crystals are anisotropic fluids that can undergo electro-convective instabilities. These instabilities have been extensively studied for nematics in unidirectional planar alignment. We investigate the electro-convective instability patterns in planar-periodic cells, wherein, in the quiescent situation the nematic undergoes static twist deformations separated by defect lines. We find two regimes that depend on the sample thickness. For large thickness, electro-convective patterns are not affected by the twist, and the samples behave as they were in planar unidirectional alignment. For small thickness, either the convective motion vertically shifts the defect lines or the twist affects the electro-convective domains and resultant curved patterns are observed.  相似文献   

14.
In the present study, graphene oxide reinforced two‐phase electromembrane extraction (EME) coupled with gas chromatography was applied for the determination of methamphetamine as a model analyte in biological samples. The presence of graphene oxide in the hollow fiber wall can increase the effective surface area, interactions with analyte and polarity of support liquid membrane that leads to an enhancement in the analyte migration. To investigate the influence of the presence of graphene oxide in the support liquid membrane on the extraction efficiency, a comparative study was performed between graphene oxide and graphene oxide/EME methods. The extraction parameters such as type of organic solvent, pH of the donor phase, stirring speed, time, voltage, salt addition and the concentration of graphene oxide were optimized. Under the optimum conditions, the proposed microextraction technique provided low limit of detection (2.4 ng/mL), high preconcentration factor (195–198) and high relative recovery (95–98.5%). Finally, the method was successfully employed for the determination of methamphetamine in urine and hair samples.  相似文献   

15.
Agarose hydrogels which showed optical anisotropy were obtained by the directional freezing of starting isotropic gels under a temperature gradient. The directional freezing caused a crystallization of many isolated ice crystal phases, leaving a honeycomb-like gel phase with a higher polymer content. The crystallographic c-axis of the ice crystals was directed to the temperature gradient. X-ray and optical analyses showed that agarose chains had a strong planar orientation along the walls'side surfaces, which were parallel to the equatorial planes of the ice crystals.Scanning electron microscopy showed that the wall consisted of a large number of sheets stacked along the wall thickness; in each sheet, agarose fibrillar structures were found to be densely aligned. With the application of repeated freezing and thawing, the anisotropy of the segregated gel phases increased.  相似文献   

16.
以二氧化硅包覆的磁性氧化石墨烯为载体, 利用热聚合方法制备了对四溴双酚A(TBBPA)有特异吸附效果的新型磁性印迹复合材料. 采用透射电子显微镜(TEM)、 扫描电子显微镜(SEM)、 傅里叶变换红外光谱(FTIR)、 热重分析(TGA)和样品振动磁强计(VSM)对该印迹复合材料进行了表征. 结果表明, 在氧化石墨烯表面制备了一层厚度为55~65 nm、 热稳定良好的磁性印迹层. 结合磁固相萃取技术(M-SPE)和高效液相色谱(HPLC)检测技术研究了该磁性印迹复合材料对四溴双酚A的吸附行为, 结果表明该印迹复合材料对四溴双酚A具有良好的选择吸附能力, 最大吸附量为16.33 mg/g. 结合HPLC检测技术, 该印迹复合材料可用于分离富集饮用水中的四溴双酚A.  相似文献   

17.
The effects of functionalized graphene sheets (FGSs) on the mechanical properties and strain‐induced crystallization of natural rubber (NR) are investigated. FGSs are predominantly single sheets of graphene with a lateral size of several hundreds of nanometers and a thickness of 1.5 nm. The effect of FGS and that of carbon black (CB) on the strain‐induced crystallization of NR is compared by coupled tensile tests and X‐ray diffraction experiments. Synchrotron X‐ray scattering enables simultaneous measurements of stress and crystallization of NR in real time during sample stretching. The onset of crystallization occurs at significantly lower strains for FGS‐filled NR samples compared with CB‐filled NR, even at low loadings. Neat‐NR exhibits strain‐induced crystallization around a strain of 2.25, while incorporation of 1 and 4 wt % FGS shifts the crystallization to strains of 1.25 and 0.75, respectively. In contrast, loadings of 16 wt % CB do not significantly shift the critical strain for crystallization. Two‐dimensional (2D) wide angle X‐ray scattering patterns show minor polymer chain alignment during stretching, in accord with previous results for NR. Small angle X‐ray scattering shows that FGS is aligned in the stretching direction, whereas CB does not show alignment or anisotropy. The mechanical properties of filled NR samples are investigated using cyclic tensile and dynamic mechanical measurements above and below the glass transition of NR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

18.
In this work we present a new technique for obtaining large diffraction gratings (some cm) by means of a simple filling of cells having a planar treatment of their inner surfaces. A homogeneous mixture, composed of a cholesteric liquid crystal and a nematic liquid crystal monomer, was used. During the filling process, the flow induces a phase separation between the cholesteric liquid crystal and the liquid crystal monomer and, at the same time, the latter is oriented planar to the surfaces of the cell. Phase separation produces alternate arrays constituted by the cholesteric liquid crystal and the nematic liquid crystal monomer. Successive UV polymerization of these films yields a permanent grating. We have investigated the transmitted and first order diffracted beam efficiency for films obtained at different temperatures. The morphology of the films was studied by using an optical microscope equipped with crossed polarizers and by electron microscopy in order to control the shape of the arrays and the alignment of the oriented polymer.  相似文献   

19.
In this work we present a new technique for obtaining large diffraction gratings (some cm) by means of a simple filling of cells having a planar treatment of their inner surfaces. A homogeneous mixture, composed of a cholesteric liquid crystal and a nematic liquid crystal monomer, was used. During the filling process, the flow induces a phase separation between the cholesteric liquid crystal and the liquid crystal monomer and, at the same time, the latter is oriented planar to the surfaces of the cell. Phase separation produces alternate arrays constituted by the cholesteric liquid crystal and the nematic liquid crystal monomer. Successive UV polymerization of these films yields a permanent grating. We have investigated the transmitted and first order diffracted beam efficiency for films obtained at different temperatures. The morphology of the films was studied by using an optical microscope equipped with crossed polarizers and by electron microscopy in order to control the shape of the arrays and the alignment of the oriented polymer.  相似文献   

20.
Controlling the chemistry of graphene is necessary to enable applications in materials and life sciences. Research beyond graphene oxide is targeted to avoid the highly defective character of the carbon framework. Herein, we show how to optimize the synthesis of oxo‐functionalized graphene (oxo‐G) to prepare high‐quality monolayer flakes that even allow for direct transmission electron microscopy investigation at atomic resolution (HRTEM). The role of undesired residuals is addressed and sources are eliminated. HRTEM provides clear evidence for the exceptional integrity of the carbon framework of such oxo‐G sheets. The patchy distribution of oxo‐functionality on the nm‐scale, observed on our highly clean oxo‐G sheets, corroborates theoretical predictions. Moreover, defined electron‐beam irradiation facilitates gentle de‐functionalization of oxo‐G sheets, a new route towards clean graphene, which is a breakthrough for localized graphene chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号