首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
The ferromagnetic and nonmagnetic phases of 2‐D Wigner electron crystal are investigated using a localized representation for the electrons. The ground‐state energies of ferromagnetic and nonmagnetic phases of 2‐D Wigner electron crystal are computed in the range of rs = 10–200. The low density favorable for Wigner crystallization is found to be 2.85 × 1013 e cm?2 for ferromagnetic phase and 5.07 × 1013 e cm?2 for the nonmagnetic phase of 2‐D Wigner electron crystal. For the given structure, the ground‐state energies of ferromagnetic and nonmagnetic phases are compared. It is found that the energy of the ferromagnetic phase is less than that of the nonmagnetic phase of the 2‐D Wigner electron crystal. Also, the results are compared with various experimental and theoretical works and it is found that our results are in good agreement with the experimental and other theoretical results for the 2‐D Wigner electron crystal. The structure‐dependent Wannier functions, which give proper localized representation for Wigner electrons, are employed in the calculation. The role of correlation energy is suitably taken into account. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

2.
The antiferromagnetic phase of a 2‐D Wigner crystal is investigated, using a localized representation for electrons. In our model, the electrons are located at the lattice sites of a face‐centered square lattice (corresponding to bcc in the 3‐D case). This lattice may be thought of as consisting of two equivalent interpenetrating sublattices. The ground‐state energies of the antiferromagnetic phase of a 2‐D Wigner electron crystal are computed with uniform neutralizing, Gaussian‐type, and Yukawa‐type positive backgrounds in the range of rs = 5 to 130. The role of correlation energy is suitably taken into account. The possibility of the antiferromagnetic phase of the 2‐D Wigner crystal having a square or circle as the region of occupation in momentum space is also analyzed. The low‐density region favorable for the antiferromagnetic phase of Wigner crystallization is found to be at rs = 7.0. Our results agree well with experimental and other theoretical results for the 2‐D Wigner crystal. The structure‐dependent Wannier functions, which give proper localized representation for Wigner electrons, are constructed and employed in the calculation for the first time. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

3.
We theoretically design a graphene-based all-organic ferromagnetic semiconductor by terminating zigzag graphene nanoribbons (ZGNRs) with organic magnets. A large spin-split gap with a 100% spin polarized density of states near the Fermi energy is obtained, which is of potential application in spin transistors. The interactions among electron, spin and lattice degrees of freedom are studied using the first-principles calculations including non-collinear spin orientations. All of the calculations consistently demonstrate that although no d electrons existing, the antiferromagnetic π-π exchange together with the strong electron-lattice interactions between organic magnets and ZGNRs make the ground state ferromagnetic.  相似文献   

4.
Using high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet‐chemistry approach. These liquid cells can feature van‐der‐Waals pressures up to 1 GPa, producing a miniaturized high‐pressure container for the crystallization in solution. The thickness of as‐received crystals is beyond the thermodynamic ultra‐thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near‐free‐standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous‐solution approaches of more metal‐oxide semiconductors with exotic phase structures and properties in graphene‐encapsulated confined cells.  相似文献   

5.
We report first principles studies of zigzag edged graphene nanoribbons (ZGNR) with one edge partially covered by topological defects. With increasing coverage of an edge by pentagons and heptagons, which are two of the simplest topological defects possible in a graphenic lattice, ZGNRs evolve from a magnetic semiconductor to a ferromagnetic metal. This evolution can be intermediated by a narrow bandgap half-metallic phase, upon suitable concentration and conformation of defects at the edge. Spin-frustration induced by topological defects lead to substantial lowering of magnetic ordering and localization of defect-states in the vicinity of the defects. Dispersion of bands constituted by the defect-states within the bandgap of the corresponding unmodified ZGNR, leads to availability of energy windows for spin-polarized electron transport. Driven primarily by exchange interactions, the energy window for transport of electrons near Fermi energy, is consistently wider and more prevalent for the minority spin, in the entire class of ZGNRs with discontinuous patches of topological defects at an edge. Such defects have been widely predicted and observed to be naturally present at the interfaces in polycrystalline graphene, and can even be formed through chemical and physical processes. Our approach thus may lead to a feasible strategy to manifest workable half-metallicity in ZGNRs without involving non-carbon dopants or functional groups.  相似文献   

6.
Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.  相似文献   

7.
Graphene monolayers are permeable to thermal protons and impermeable to other atoms and molecules, exhibiting their potential applications in fuel cell technologies and hydrogen isotope separation. Furthermore, the giant photoeffect in proton transport through catalytically activated graphene membranes was reported by Geim et al. Their experiment showed that the synergy between illumination and the catalytically active metal plays a key role in this photoeffect. Geim et al. suggested that the local photovoltage created between metal nanoparticles and graphene could funnel protons and electrons toward the metal nanoparticles for the production of hydrogen, while repelling holes away from them, causing the giant photoeffect. However, based on static electric field theory, this explanation is not convincing and the work lacks an analysis on the microscopic mechanism of this effect. Herein, we provide the exact microscopic mechanism behind this phenomenon. In semi-metal pristine graphene, most photon excited hot electrons relax to lower energy states within a timescale of 10−12 s, while the typical timescale of a chemical reaction is 10−6 s. Thus, hot electrons excited by incident photons relax to lower energy states before reacting with protons through the graphene. When graphene is decorated with metal, electron transfer between the graphene and the metal, induced by different work functions, would result in the formation of interface dipoles. When using metals such as Pt, Pd, Ni, etc., which can strongly interact with graphene, local dipoles form. Protons are trapped around the negative poles of the local dipoles, while electrons are around the positive poles. Upon illumination, the electrons are excited to metastable excited states with higher energy levels. Due to the energy barriers around them, the free electrons in the metastable excited states will have a relatively longer lifetime, which facilitates the production of hydrogen through their effective reaction with protons that permeated through the graphene. The concentration of high-energy electrons under illumination was estimated, and the results showed that more electrons are energized to the excited state with strong illumination. According to the analysis, the giant photoeffect in proton transport through the catalytically activated graphene membrane is attributed to long-lived hot electrons and a fast proton transport rate. Since there is no change in the activation energy of the reaction, the metal catalyst increases the rate of the reaction by increasing the number of successful collisions between the reactants to produce the significant photoeffect. This might lead to a new microscopic mechanism that clarifies the role of the catalyst in improving the efficiency of photo(electro)catalytic reactions.  相似文献   

8.
The structure, electromagnetic and optical properties of the O-terminated graphene nanorib-bons with armchair edge are studied using first-principles theory. The results show that the O-terminated armchair edge are more stable than the H-terminated ribbons and show metal-lic character. Spin-polarized calculations reveal that the antiferromagnetic state are more stable than the ferromagnetic state. The energy band and density of states analyses show that the O-terminated armchair edge are antiferromagnetic semiconductors. Because of the terminated O atoms, the dielectric function has an evident red shift and the first peak is the strongest with its main contribution derived from the highest valence band. The peaks of the dielectric function, re ection, absorption, energy loss are related to the transition of electrons. Our results suggest that the O-terminated graphene nanoribbons have potential applications in nanoelectronics, opto-electric devices.  相似文献   

9.
By a combination of theoretical and experimental design, we probed the effect of a quasi‐single electron on the surface plasmon resonance (SPR)‐mediated catalytic activities of Ag nanoparticles. Specifically, we started by theoretically investigating how the E‐field distribution around the surface of a Ag nanosphere was influenced by static electric field induced by one, two, or three extra fixed electrons embedded in graphene oxide (GO) next to the Ag nanosphere. We found that the presence of the extra electron(s) changed the E‐field distributions and led to higher electric field intensities. Then, we experimentally observed that a quasi‐single electron trapped at the interface between GO and Ag NPs in Ag NPs supported on graphene oxide (GO‐Ag NPs) led to higher catalytic activities as compared to Ag and GO‐Ag NPs without electrons trapped at the interface, representing the first observation of catalytic enhancement promoted by a quasi‐single electron.  相似文献   

10.
采用密度泛函理论研究了Ca元素对焦炭表面NO吸附行为的影响。使用周期性石墨烯模型近似模拟实际焦炭表面的石墨化结构,并在石墨烯表面装饰Ca原子(按质量计Ca原子覆盖率为13.3%),考察了Ca元素对焦炭表面NO吸附的催化作用。计算结果表明,NO分子在纯净石墨烯表面的吸附属于物理吸附,结合能仅为-19.34 kJ/mol;石墨烯表面掺入Ca原子后,由于Ca原子4s轨道和3d轨道的电子转移到NO分子,结合能显著提高至-206.02 kJ/mol。  相似文献   

11.
Graphene is one of the most promising materials in nanotechnology and has attracted worldwide attention and research interest owing to its high electrical conductivity, good thermal stability, and excellent mechanical strength. Perfect graphene samples exhibit outstanding electrical and mechanical properties. However, point defects are commonly observed during fabrication which deteriorate the performance of graphene based-devices. The transport properties of graphene with point defects essentially depend on the imperfection of the hexagonal carbon atom network and the scattering of carriers by localized states. Furthermore, an in-depth understanding of the effect of specific point defects on the electronic and transport properties of graphene is crucial for specific applications. In this work, we employed density functional theory calculations and the non-equilibrium Green's function method to systematically elucidate the effects of various point defects on the electrical transport properties of graphene, including Stone-Waals and inverse Stone-Waals defects; and single and double vacancies. The electrical conductance highly depends on the type and concentration of point defects in graphene. Low concentrations of Stone-Waals, inverse Stone-Waals, and single-vacancy defects do not noticeably degrade electron transport. In comparison, DV585 induces a moderate reduction of 25%–34%, and DV55577 and DV5555-6-7777 induce significant suppression of 51%–62% in graphene. As the defect concentration increases, the electrical conductance reduces by a factor of 2–3 compared to the case of graphene monolayers with a low concentration of point defects. These distinct electrical transport behaviors are attributed to the variation of the graphene band structure; the point defects induce localized states near the Fermi level and result in energy splitting at the Dirac point due to the breaking of the intrinsic symmetry of the graphene honeycomb lattice. Double vacancies with larger defect concentrations exhibit more flat bands near the Fermi energy and more localized states in the defective region, resulting in the presence of resonant peaks close to the Fermi energy in the local density of states. This may cause resonant scattering of the carriers and a corresponding reduction of the conductance of graphene. Moreover, the partial charge densities for double vacancies and point defects with larger concentrations exhibit enhanced localization in the defective region that hinder the charge carriers. The electrical conductance shows an exponential decay as the defect concentration and energy splitting increase. These theoretical results provide important insights into the electrical transport properties of realistic graphene monolayers and will assist in the fabrication of high-performance graphene-based devices.  相似文献   

12.
The use of semiconductor photocatalysts (CdS, g-C3N4, TiO2, etc.) to generate hydrogen (H2) is a prospective strategy that can convert solar energy into hydrogen energy, thereby meeting future energy demands. Among the numerous photocatalysts, TiO2 has attracted significant attention because of its suitable reduction potential and excellent chemical stability. However, the photoexcited electrons and holes of TiO2 are easily quenched, leading to limited photocatalytic performance. Furthermore, graphene has been used as an effective electron cocatalyst in the accelerated transport of photoinduced electrons to enhance the H2-production performance of TiO2, owing to its excellent conductivity and high charge carrier mobility. For an efficient graphene-based photocatalyst, the rapid transfer of photogenerated electrons is extremely important along with an effectual interfacial H2-production reaction on the graphene surface. Therefore, it is necessary to further optimize the graphene microstructures (functionalized graphene) to improve the H2-production performance of graphene-based TiO2 photocatalysts. The introduction of H2-evolution active sites onto the graphene surface is an effective strategy for the functionalization of graphene. Compared with the noncovalent functionalization of graphene (such as loading Pt, MoSx, and CoSx on the graphene surface), its covalent functionalization can provide a strong interaction between graphene and organic molecules in the form of H2-evolution active sites that are produced by chemical reactions. In this study, carboxyl-functionalized graphene (rGO-COOH) was successfully modified via ring-opening and esterification reactions on the TiO2 surface by using an ultrasound-assisted self-assembly method to prepare a high-activity TiO2/rGO-COOH photocatalyst. The Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG) curves revealed the successful covalent functionalization of GO to rGO-COOH by significantly enhanced ―COOH groups in FTIR and increased peak area of carboxyl groups in XPS. A series of characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), XPS, and UV-Vis adsorption spectra, were performed to demonstrate the successful synthesis of TiO2/rGO-COOH photocatalysts. The experimental data for the hydrogen-evolution rate showed that the TiO2/rGO-COOH displayed an extremely high hydrogen-generation activity (254.2 μmol∙h−1∙g−1), which was 2.06- and 4.48-fold higher than those of TiO2/GO and TiO2, respectively. The enhanced photocatalytic activity of TiO2/rGO-COOH is ascribed to the carboxyl groups of carboxyl-functionalized graphene, which act as effective hydrogen-generation active sites and enrich hydrogen ions owing to their excellent nucleophilicity that facilitates the interfacial hydrogen production reaction of TiO2. This study provides novel insights into the development of high-activity graphene-supported photocatalysts in the hydrogen-generation field.   相似文献   

13.
The discovery of DNA strand breaks induced by low energy secondary electrons sparks a necessity to elucidate the mechanism. Through theoretical studies based on a sugar-phosphate-sugar model that mimics a backbone section of the DNA strand, it is found that bond cleavages at 3' or 5'C-O sites after addition of an electron are possible with a ca. 10 kcal/mol activation barrier. Moreover, the potential energy surfaces show that dissociation at both sites is highly favorable thermodynamically. Although the phosphate group in DNA is not a favored site for electron attachment because of competitive electron transfer to the bases, any electrons which attach to phosphates on first encounter may induce strand breaks even when the electron energy is near zero eV. These findings have profound implication as low energy secondary electrons are abundantly generated in all types of ionization radiation.  相似文献   

14.
One-dimensional fused-azulene oligomers (n = 2-6) are studied with the effective valence bond as well as density functional theory methods. A nonferromagnetic (closed-shell singlet) to ferromagnetic (triplet) ground state transformation is witnessed with increasing length of oligomers. The computational results are interpreted in terms of spin coupling between the unpaired electrons of two nonbonding molecular orbitals localized, respectively, on the top and bottom chains of the oligomers. The present study provides a theoretical suggestion for understanding the ferromagnetic spin polarizations that has been observed very recently in graphene nanoribbons.  相似文献   

15.
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.  相似文献   

16.
Doped graphene materials are of huge importance because doping with electron‐donating or electron‐withdrawing groups can significantly change the electronic structure and impact the electronic and electrochemical properties of these materials. It is highly important to be able to produce these materials in large quantities for practical applications. The only method capable of large‐scale production is the oxidative treatment of graphite to graphene oxide, followed by its consequent reduction. We describe a scalable method for a one‐step doping of graphene with phosphorus, with a simultaneous reduction of graphene oxide. Such a method is able to introduce significant amount of dopant (3.65 at. %). Phosphorus‐doped graphene is characterized in detail and shows important electronic and electrochemical properties. The electrical conductivity of phosphorus‐doped graphene is much higher than that of undoped graphene, owing to a large concentration of free carriers. Such a graphene material is expected to find useful applications in electronic, energy storage, and sensing devices.  相似文献   

17.
The present status of theories for interpreting experimental ballistic electron emission microscopy (BEEM) data is reviewed. Current formalisms may be divided into two broad classes: one-electron theories, where carriers do not exchange energy with other excitations in the solid, and scattering approaches, where such losses are considered. While the former theories have been formulated with the help of Green's functions (GFs), the latter have relied more on simulation by Monte-Carlo techniques. For the one-electron approach, we discuss why the originally suggested free propagation of carriers (e.g., ballistic electrons) does not offer a consistent interpretation of the experimental database and should be replaced instead by considering the coherent propagation of electrons interacting with the periodic potential in the metal base. Bridging towards the scattering formalisms, it is shown how GFs incorporating a complex self-energy are still a feasible approach, when only a single inelastic source of scattering (e.g., electron–electron (e–e) interaction) is operative. Within this one-electron scheme, the importance of an accurately computed transmission coefficient at the metal-semiconductor interface is stressed, when aiming to obtain absolute BEEM currents. Analyzing results from scattering techniques, it is argued that this coefficient should be modified to take into account the back-injection of electrons from the semiconductor into the metal. A general expression for BEEM currents is given that can be used to simulate results in real-space, reciprocal-space or energy-space (spectroscopy with BEEM). Some experimental results are discussed in relation to the theories presented.  相似文献   

18.
    
Summary By use of an appropriate gamma radiation, conversion electrons may be produced by Mössbauer effect also in a depth below the sample surface deeper than the free path for inelastic electron scattering. Because the Mössbauer spectrum of the conversion electrons reflects the local phase composition, the recording of all electrons escaping from the surface allows an integral phase analysis of a layer of some 10–100 nm thickness. If only electrons within a narrow range of energy are recorded, a depth selective phase analysis is possible. The applicability of these two techniques of conversion electron spectroscopy is demonstrated by a few examples concerning oxidation and passivation of steel. Contrary to usual CEMS experiments, where always isotopically enriched samples have been used, natural samples were employed in the described experiments.  相似文献   

19.
A new approach based on far infrared‐assisted in situ reduction was developed for the facile one‐step preparation of graphene–nickel nanoparticle hybrid by refluxing a mixture solution containing graphene oxide, nickel(II) sulfate, and hydrazine over an far‐infrared heater. The reduction time was as short as 20 min. The structure of the material was investigated by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, energy dispersive spectroscopy, vibrating sample magnetometery, and Fourier transform infrared spectroscopy. Magnetic investigations indicate that the grapheme–nickel nanoparticle hybrid exhibits ferromagnetic behavior at room temperature. Meanwhile, the hybrid was successfully employed in the enrichment and identification of proteins and peptides in combination with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry based on its excellent magnetic responsibility, high dispersibility, large surface area, and hydrophobicity, indicating great promise for a wide range of applications.  相似文献   

20.
The first experimental evidence of the existence of electron states localised on a clean metal surface was available to us since 1967 in the form of the well known Swanson-Crouser hump in the energy distribution of electrons field-emitted from the W(100) plane, although it took some time before its interpretation as such, in 1976, was established beyond any doubt. Subsequently, angle-resolved photoemission proved to be a more competitive method for the investigation of surface states of metals and semiconductors. However, field emission remains a useful tool in surface physics research.

After a brief introduction to field emission spectroscopy, we review recent work which shows the potentiality of this technique in the investigation of the surface properties of semiconductors, ferromagnetic metals, thermal superconductors, and of the electronic structure of supported clusters.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号