首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
新型侧基含磷共聚酯的阻燃和热降解动力学   总被引:3,自引:0,他引:3  
利用动态热重分析法(TG)研究了聚酯(PET )及侧基含磷共聚酯(FR-PET)在不同升温速率下的热稳定性及热降解动力学, 并通过极限氧指数法(LOI)考察了FR-PET的阻燃性能; 采用Flynn-Wall-Ozawa方法分析了PET和FR-PET的热降解表观活化能; 利用Coast-Redfern方法通过对不同机理模型的选取, 确定了PET和FR-PET热降解动力学机理及其模型, 得出了主降解阶段的非等温动力学方程及热降解速率曲线图. 研究结果表明, 侧基含磷单元的引入提高了聚酯的阻燃性能, 侧基上的P—C和P—O键易断裂, 从而降低了聚酯的热稳定性. PET和FR-PET的热降解表观活化能(0.1≤α≤0.85)分别为194-227和184-209 kJ/mol; PET和FR-PET热降解反应均属于受减速形α-t曲线控制的反应级数机理, 其机理函数为f(α)=3(1-α)2/3(0.1≤α≤0.85). 侧基含磷单元的引入对PET的主降解阶段的热降解速率并无实质上的影响. 侧基含磷共聚酯的凝聚相阻燃作用有限, 可能以气相阻燃机理为主发挥阻燃作用.  相似文献   

2.
测定高聚物动力学结晶能力的非等温DSC方法   总被引:5,自引:0,他引:5  
张志英 《应用化学》1997,14(5):32-35
研究了从非等温DSC结晶曲线计算高聚物动力学结晶能力的方法.从高聚物非等温结晶动力学微分方程出发导出了计算高聚物动力学结晶能力的新方程.以含有不同催化剂的聚对苯二甲酸乙二酯为例,对其结晶进行了测试与计算.发现合理地选定最快结晶速率温度是计算动力学结晶能力的关键.本方法所得动力学结晶能力能正确反映高聚物的整体结晶信息  相似文献   

3.
水溶性高聚物的研究进展   总被引:15,自引:4,他引:15  
自八十年代初,水溶性高聚物再次成为高分子科学研究热点,评述了水溶性高聚物,特别是疏水缔合型改性水溶性高聚物的最新进展。  相似文献   

4.
气氛对尼龙1010热降解的影响   总被引:5,自引:0,他引:5  
利用TG和DTA研究了尼龙1010在N2气和空气流巾的降解过程和动力学,考察了反应气氛对降解步骤.降解温度、降解率和动力学参数的影响,分析了两者降解机理的可能差别.发现空气中的热氧降解为多步反应,而N2气中的热降解为一步反应Z降解温度和降解率,N2气中均高于空气中;表观反应级数N2气中为1.0,空气中为1.1级.  相似文献   

5.
阻燃共聚酯/粘土复合物热降解动力学研究   总被引:2,自引:0,他引:2  
用插层共聚方法合成了含磷共聚酯/粘土复合物。用热重(TG)方法考察热降解动力学。通过在空气中以不同的升温速率升温至设定温度,用Kissinger法和Hymn-Wall-Ozawa法对数据进行处理。结果表明,粘土组分含量较高的反应活化能较大,热稳定性较好。  相似文献   

6.
聚十二烷二元酸丁二酯是长碳链脂肪族聚酯中的一种新的聚合物材料.近年来,随着对环境问题的日益重视,利用脂肪族聚酯容易水解的特性,开发生物降解脂肪族聚酯材料的研究得到广泛开展.目前脂肪族二元酸酯的研究大多是围绕聚丁二酸酯、聚乙二酸酯及其共聚酯这一类降解速度较快的材料进行的.虽然这些聚酯已有部分商品化,但远远不能满足对特定降解速率材料的需求.长碳链脂肪族聚酯由于其具有类似PE的结构特征,又兼具聚酯的结构特征,有望在可降解包装材料、书籍装订、服装用热熔胶等方面获得广泛的应用.  相似文献   

7.
脂肪族聚酯酸酐的合成及其药物控制释放性能的研究   总被引:1,自引:0,他引:1  
合成了一系列脂肪族聚酯酸酐并研究了其降解和药物控释性能.结果表明,脂肪族聚酯酸酐具有较低的熔融温度(约70℃);体外降解速率随单体中次甲基数增多而降低,在24~40h降解完全;含乙酰水杨酸的聚酯酸酐基质片的药物释放速率与聚酯酸酐的降解行为有关.  相似文献   

8.
生物降解性聚酯   总被引:1,自引:0,他引:1  
本文阐述了生物降解性聚酯的主要产品,生物降解性聚酯的降解机理及生物降解性聚合物的存在问题和研究方向.  相似文献   

9.
<正> 近年来热致液晶性的全芳族共聚酯的研究受到了人们的极大的关注,某些具有刚性主链和主链上包含介晶段的聚酯能显示出热致液晶性,这种高聚物在熔融态表现出自发取向的倾向,通过简单熔融纺丝有希望制备出高强、高模纤维。  相似文献   

10.
1 前言PET(聚对苯二甲酸乙二醇酯 )由于具有优良的综合性能 ,被广泛地应用于合成纤维、薄膜和工程塑料等领域 ,但由于它的可燃性 ,在火灾事故中 ,由其着火所致占有较大比例 ,因此它的阻燃化更加引起了世界范围内学者的广泛关注[1 ] 。由于磷是对聚酯的最有效阻燃元素 ,采用共聚法制备含磷PET的报道较多 ,也有关于其热降解动力学研究的报道[2~ 1 0 ] 。但本文所采用的单体羟基苯氧膦丙酸 (CEPP)和PET共聚所得产物的热降解动力学研究 ,尚未见报道。研究该种含磷PET的热稳定性和热降解行为对研究该材料的使用范围和成型加工…  相似文献   

11.
聚甲基丙烯酸甲酯热氧化降解的化学动力学研究   总被引:1,自引:0,他引:1  
使用质谱、热分析手段研究了PMMA热解反应.结果表明,在氮气中,PMMA-CH=CH2有两个失重阶段,分别对应于主链末端双键引发的断链和主链无规则断链反应,转折点的失重率约为26%.其中,第一阶段的失重速率受扩散过程控制,平均表观活化能E为158.5 kJ/mol, lnA为27.69;第二失重阶段为1.5级化学反应,平均表观活化能E为214.79 kJ/mol, lnA为40.46.在空气中, PMMA也有两个失重阶段,反应机理为1级化学反应,转折点处的失重率约为70%.其中在第一失重阶段平均表观活化能E为130.32 kJ/mol, lnA为24.81,在此阶段中, 过氧化基团的分解反应对PMMA的失重速率有重要影响; 在空气中第二失重阶段平均表观活化能E为 78.25 kJ/mol, lnA为13.97.  相似文献   

12.
采用热分析技术考察了氟橡胶及氟橡胶(FPM)/改性乙丙橡胶(MEPDM)并用胶在氮气中的热稳定性, 通过微分法与积分法两种动力学方法计算出了FPM及FPM/MEPDM并用胶的热分解活化能E和指前因子A. 结果表明, 并用胶的热分解温度稍高于纯的氟橡胶, 但热分解活化能略低于氟橡胶, FPM、FPM/MEPDM(5%)和FPM/MEPDM(10%)的热分解活化能分别为251.74、244.98和219.60 kJ·mol-1; 热分解反应级数n均为0.95. 随着失重百分率的增大, 热分解活化能增大.  相似文献   

13.
The thermal degradation behavior and the Arrhenius parameter of curaua, kenaf, and jute vegetal fibers were studied using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and thermogravimetry analysis. XRD showed that the crystallite sizes in the (200) plane were in the order: curaua < jute < kenaf, and similar results were obtained for basal spacing. FTIR spectroscopy corroborated the XRD results. The thermal behavior of the fibers was analyzed by identifying the cellulose and hemicellulose content using independent parallel first-order models. The results were not very consistent with the kinetic degradation models of Kissinger, Friedman, and Flynn–Wall–Ozawa (taking into account the standard errors), which were used to determine the apparent activation energy of the fibers. In addition, the frequency factor (pre-exponential parameter) was observed to be independent of the heating rate. The fibers exhibited a compensation effect; i.e., higher apparent activation energies led to higher frequency factors. Finally, the solid-state degradation mechanism of all fibers was found to comprise diffusion and random nucleation followed by instantaneous growth of nuclei.  相似文献   

14.
Quantum mechanical and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations are carried out to study the thermal unimolecular decomposition of 2,5-dihydrofuran (1),2,5dihydrothiophene (2),and 3-pyrroline (3) at the MPW1PW91/6-31++G level of theory,and the results are in good agreement with the experimental values.The predicted high pressure limit rate constants (k(T)) in various states of activation energy and pre-exponential (S1:(A(calc.),E a(calc.)),S2:(A (calc.),E a(exp.)),and S3:(A (exp.),E a(calc.))) for the thermal decomposition processes 1-3 were evaluated.Also,the fall-off pressures (P1/2) for compounds 1-3 in the states 1-3 are found to be (1.24×10-2,1.09×10-3,and 4.19×10-2mmHg),(1.24×10-2,1.63×10-3,and 2.79×10-2mmHg),and (1.24×10-2,1.63×10-3,and 4.19×10-2 mmHg),respectively.As the fall-off pressure of thermal decomposition process of compounds 1-3 is in the following order:P1/2(3)> P1/2(1)> P1/2 (2),the decomposition rates are as below:rate(3) 相似文献   

15.
The synthesis of poly(butylene terephthalate) (PBT) nanocomposites by in situ polymerisation method using an organo-modified layered doubled hydroxide is described. 4-Sulfobenzoic acid potassium salt, sodium dodecyl sulfate and dimethyl 5-sulfo isophthalate sodium salt were used as intercalating compounds to improve clay exfoliation. The thermal and dynamic mechanical properties of the nanocomposites prepared were investigated and compared to those of montmorillonite-type nanocomposites prepared by similar synthetic route. The nanocomposites obtained, independent of the degree of exfoliation, showed better dynamic mechanical properties respect to PBT homopolymer while improvements in thermal stability were achieved when dimethyl 5-sulfo isophthalate was used as intercalating agent, highlighting the importance of the interactions of ionic groups covalently linked to the polymer with the charged clay platelets.  相似文献   

16.
The rate constants for the reactions of atomic bromine with dimethyl ether and diethyl ether were measured from approximately 300 to 350 K using the relative rate method. Both isooctane and isobutane were used as the reference reactants, and the rate constants for the reactions of these hydrocarbons were measured relative to each other over the same temperature range. The kinetic measurements were made by photolysis of dilute mixtures of bromine, the reference reactant, and the test reactant in mixtures of argon and oxygen at a total pressure of 1 atm. The resulting ratios of rate constants were combined with the absolute rate constant as a function of temperature for the reference reaction of Br with isobutane to calculate absolute rate constants for the reactions of Br with isooctane, dimethyl ether, and diethyl ether. The absolute rate constant, in the units cm3 molecule(-1) s(-1), for the reaction of Br with dimethyl ether was given by k = (3.8 +/- 2.4) x 10(-10) exp(-(3.54 +/- 0.21) x 10(3)/T) while for the reaction of Br with diethyl ether the rate constant is given by k = (2.8 +/- 2.7) x 10(-10) exp(-(2.44 +/- 0.32) x 10(3)/T). On the same basis, the rate constant for the reaction of Br with isooctane is given by k = (3.34 +/- 0.59) x 10(-12) exp(-(1.80 +/- 0.11) x 10(3)/T). In each case, the activation energy of the reaction is significantly smaller than the endothermicity of the reaction. This is discussed in terms of a complex mechanism for these reactions.  相似文献   

17.
Thermotropic liquid crystalline terpolymers consisting of three units of p-oxybenzoate (B), ethylene terephthalate (E), and vanillate (V), were studied through a high-resolution thermogravimetry to ascertain their thermostability and kinetics parameters of thermal decomposition in nitrogen and air. Overall activation energy data of the major decomposition have been calculated through four calculating techniques. The thermal degradation occurs in three steps in nitrogen, but in four steps in air due to an additional thermo-oxidative step. The thermal degradation temperatures are higher than 436°C in nitrogen and 424°C in air and increase with increasing B-unit content at a fixed V-unit content of 5 mol%. The temperatures at the first maximum weight-loss rate are higher than 444°C in nitrogen and 431°C in air and increase slightly with an increase in B-unit content. The first, second, and third maximum weight-loss rates almost maintain at 10–11, 10–11, and 3.6–5.3%/min regardless of copolymer composition and testing atmosphere. The char yields at 500°C in both nitrogen and air are larger than 40 wt% and increases with increasing B-unit content. But the char yields at 800°C in nitrogen and air are quite different, i.e., 18–25 wt% in nitrogen and 0 wt% in air. The activation energy and Ln (pre-exponential factor) for the major decomposition are higher in nitrogen than in air and decrease slightly with an increase in B-unit content at a given V-unit content 5 mol%. There is no regular variation in the decomposition order with the variation of copolymer composition and testing atmosphere. It is found that the most V-unit-containing terpolymer exhibited the lowest degradation temperature, lowest activation energy, and lowest Ln (pre-exponential factor). The activation energy, decomposition order, and Ln (pre-exponential factor) of the thermal degradation for the terpolymers, are situated in the ranges of 121–248 kJ/mol, 1.5–2.8, 19–38 min?1, respectively. These results indicate that the terpolymers exhibit high thermostability. The isothermal decomposition kinetics of the terpolymer at 450°C have also been discussed and compared with the results obtained based non-isothermal high-resolution thermogravimetry.  相似文献   

18.
停流法研究Cu(Ser)2及Cu(Gly-Gly)2催化O2·-歧化反应动力学   总被引:3,自引:0,他引:3  
采用停流法对pH=7.8的磷酸盐缓冲液体系中丝氨酸铜Cu(ser)2和甘氨酰甘氨酸铜Cu(Gly-Gly)2催化超氧阴离子自由基O2-歧化反应的动力学进行了研究,求得不同温度下的催化速率常数Kcat、反应级数n、活化能Ea及指前因子A,初步探讨了Cu(Ser)2和Cu(Gly-Gly)2催化O2-歧化反应机理,证实了第一步反应为整体反应过程的速控步骤.  相似文献   

19.
The synthesis of new amphiphilic polyesters based on poly(ethylene glycol) (PEGs) and studies on their solution properties are reported. Two novel monomers, dimethyl 5-n-butoxy isophthalate (2) and dimethyl 5-n-octoxy isophthalate (3) were synthesized. Three series of novel amphiphilic polyesters, i.e. poly(ethyleneoxy isophthalate)s (10-15), poly(ethyleneoxy n-butoxy isophthalate)s (16-21) and poly(ethyleneoxy n-octoxy isophthalate)s (22-27) have been synthesized from PEGs of different sizes and dimethyl isophthalates 1-3 via the transesterification-polycondensation using dibutyltin diacetate as a catalyst. The structures of the polyesters were established from a detailed analysis of their spectra, i.e. FTIR, 1H-NMR (one- and two-dimensional) and 13C-NMR. By adjusting the ratio of hydrophobic (diesters) and hydrophilic (PEGs) segments in polymers, their main chain structures and solution properties could be changed. The viscosity molecular weights (Mv) of polymers, obtained from Mark-Houwink-Sakurada relationship having poly(ethylene terephthalate) as a model, were in the range of 4500-32,000 g/mol. Intrinsic viscosities were studied based on polymer backbone length (PEGs effect) and pendant group (diesters effect) and these were found to be dependent on molecular weights of the PEGs used.  相似文献   

20.
A series of six chalcoglycosides (phenyl-2,3,4,6-tetra-O-benzoyl-1-seleno-beta-D-glucopyranoside, phenyl-2,3,4,6-tetra-O-benzyl-1-seleno-beta-D-glucopyranoside, phenyl-2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside, p-tolyl-2,3,4,6-O-benzoyl-1-thio-beta-D-glucopyranoside, p-tolyl-2,3,4,6-O-benzyl-1-thio-beta-D-glucopyranoside, and phenyl-2,3,4,6-O-benzyl-beta-D-glucopyranoside) are voltammetrically interrogated in dimethyl sulfoxide, so as to determine their formal (i.e. thermodynamic) redox potentials. The electrochemical oxidation of the chalcoglycoside is shown to follow an overall EC-type mechanism, in which the electro-generated cation radical undergoes an irreversible carbon-chalcogen bond rupture to produce the corresponding glycosyl cation, which may react further. The kinetics of the initial heterogeneous electron transfer process and subsequent irreversible homogeneous chemical degradation of the radical cation are reported, with values for the standard electrochemical rate constant k(0) in the order of 10(-2) cm s(-1) and the first order homogeneous rate constant, k(1), of the order of 10(3) s(-1). The formal oxidation potentials were found to vary according to the identity of the chalcogenide, such that OPh > SPh similar to STol > SePh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号