首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以聚乙烯吡咯烷酮(PVP)为添加剂对毛细管柱进行动态修饰,用于碱性蛋白分离。对4种碱性蛋白质进行分离,实验结果表明聚乙烯吡咯烷酮能够很好地抑制电渗流(EOF)及碱性蛋白在石英毛细管壁上的吸附作用。在pH4.0,PVP浓度(W/V)为0.4%时,EOF仅为1.35×10~(-9) m~2/V.s,平均柱效可达5×10~5理论塔板数/m。每次运行之间(n=6),天与天之间(n=6),迁移时间的相对标准偏差(RSD%)分别小于1%和3%,表明该动态涂敷方法具有良好的重现性和稳定性。另外,由于PVP的粘度较小,使得该方法操作方便、快捷。  相似文献   

2.
以室温离子液体N-辛基吡啶六氟磷酸盐为粘合剂与二茂铁和石墨粉相混合制备了一种新型二茂铁-离子液体修饰碳糊电极。以该电极为工作电极,采用循环伏安法、计时安培法研究了多巴胺(DA)在该糊电极上的电化学行为。实验结果表明:该电极在pH 5.0的乙酸-乙酸钠缓冲溶液中,外加电压0.8 V条件下,灵敏度最高。电流增量与DA浓度在1.0×10-5~1.0×10-3 mol/L范围内呈良好的线性关系,检出限为5.0×10-6 mol/L(S/N=3)。  相似文献   

3.
毛细管电泳-安培法测定复方磺胺甲噁唑片中的有效成分   总被引:1,自引:0,他引:1  
采用毛细管电泳-安培法(CE-AD)同时分离测定了磺胺甲噁唑(sulfamethoxazole,SMZ)、磺胺嘧啶(sulfadiazine,SD)和抗菌增效剂甲氧苄胺嘧啶(trimethoprim,TMP)3种常用磺胺类抗菌药物成分,考察了实验参数对分离、检测体系的影响。在优化实验条件下,以300μm碳圆盘电极作为工作电极,检测电位为1050mV(vs.SCE),在Na2B4O7(13mmol/L)-KH2PO4(18mmol/L)(pH5.8)的缓冲溶液中,分离电压18kV,进样6s,3组分在14min内可实现基线分离。上述3组分浓度分别在5×10-4~5×10-2、5×10-4~0.1和5×10-4~5×10-2g/L范围内与其峰电流强度呈线性关系,检出限达5.1×10-5~8.0×10-5g/L(S/N=3)。该方法已成功应用于复方磺胺甲噁唑片中抗菌活性成分的含量测定,结果令人满意。  相似文献   

4.
合成了5种新型1-烷基-2,3-二甲基咪唑六氟磷酸盐类离子液体,并以离子液体为介质制备空白电极及过氧化氢酶电极.采用循环伏安法研究电极电化学行为,结果表明离子液体有优良的电化学性质.离子液体空白电极的基体峰电流都在数nA范围内,电化学窗口大于4 V;不同离子液体酶电极的电化学行为存在明显差异.在5种离子液体中,仅有1-戊基-2,3-二甲基咪唑六氟磷酸盐能很好地保持酶活,呈现灵敏的电化学响应.此外,该酶电极还具有良好的稳定性,4 ℃保存30 天后,电化学性质没有明显变化.在0.1 mol/L的H3PO4缓冲溶液(pH 7.0)中,该酶电极还原峰电流随溶液中H2O2浓度的增加而增大.当H2O2浓度在3.17×10-6~12.4×10-6 mol/L之间,酶电极的还原峰电流符合线性关系,其检出限为1.1×10-6 mol/L.方法已用于环境水中痕量H2O2的测定.  相似文献   

5.
制备了镍纳米粒子-离子液体修饰电极,在0.1 mol/L磷酸缓冲溶液(pH 6.0)中研究了多巴胺(DA)在修饰电极上的电化学行为.与裸电极相比,DA在该修饰电极上的氧化还原电位明显降低,氧化还原反应的峰电流明显增大,DA的峰电流与其浓度在2.0×10~(-8) ~1.0×10~(-4) mol/L范围内呈良好的线性关系,检出限为6.5×10~(-9) mol/L.该修饰电极对抗坏血酸具有明显的抗干扰能力.  相似文献   

6.
以金微盘电极和离子液体修饰单壁碳纳米管糊微盘电极分别作为毛细管电泳电化学检测器,试验了两种电极对过氧化氢的响应情况,将金微盘电极与毛细管电泳联用,对过氧化氢进行了定性和定量检测.探讨了分离电压、缓冲溶液pH值和工作电位等条件对H2O2检测的影响.实验结果表明,峰电流与H2O2浓度在1.0×10-6~1.0×10-5mo...  相似文献   

7.
本文利用离子液体(IL)和普鲁士蓝(PB)纳米方块的协同作用测定鸟嘌呤。首先制备了IL-PB修饰电极,用循环伏安法对修饰电极进行了表征。为了使PB自身的信号达到最大,优化了各种制备条件,如IL和PB的比例,KCl溶液和HCl的浓度等。使用制备的修饰电极催化鸟嘌呤,优化了鸟嘌呤的测定条件如B-R缓冲溶液pH值;疏水性离子液体和亲水性离子液体对鸟嘌呤的影响,结果表明疏水性离子液体催化效果更好。该法在最优化条件下检测鸟嘌呤,在4.0×10-7~1.4×10-6 mol/L范围内与氧化峰电流呈现良好的线性关系,检出限为6.0×10-8 mol/L。  相似文献   

8.
徐向东  胡涌刚  李欣欣 《分析化学》2006,34(Z1):260-262
根据某些氨基酸和蛋白质在碱性条件下具有能显著增强鲁米诺-铁氰化钾体系化学发光信号的特性,对毛细管电泳-化学发光法直接分离测定生物分子的可行性进行了研究.电泳所用缓冲溶液为2.5 mmol/L、含2.0 mmol/L鲁米诺的硼砂缓冲溶液;氧化试剂为2.0×10-4 mol/L铁氰化钾.在优化条件下,L-精氨酸和胃蛋白酶可直接实现分离,其检出限(S/N=3)分别为1.3×10-4 mol/L和7.1×10-7 mol/L.通过对市售的3种L-精氨酸标准样品进行分离分析研究,证明该方法可应用于L-精氨酸标准样品的纯度分析.  相似文献   

9.
在pH4.3的柠檬酸-磷酸氢二钠缓冲溶液中,以牛血红蛋白为催化剂,加速过氧化氢与过量的KI反应生成I_3~-,I_3~-再与碱性染料乙基紫结合生成离子缔合物颗粒,大大增强了体系的共振散射强度,据此建立了一种测定水中痕量过氧化氢的共振散射光谱法。在659nm处,体系的共振散射强度增加值(ΔI)与过氧化氢的浓度在1.033×10~(-7)~2.272×10~(-6) mol·L~(-1)范围内呈线性关系,检出限(3s/k)为1.64×10-8 mol·L~(-1)。方法用于测定雨水中的过氧化氢,测定值的相对标准偏差(n=5)小于5.0%,加标回收率在104%~105%之间。  相似文献   

10.
碱性离子液体催化甘油合成1,2-甘油碳酸酯(英)   总被引:3,自引:0,他引:3  
以离子液体为催化剂,在无溶剂体系中,考察了生物质平台化合物甘油转化1,2-甘油碳酸酯的反应.与酸性离子液体和常用无机碱性催化剂相比,碱性离子液体咪唑基1-丁基-3-甲基咪唑([Bmim]Im)、氢氧化1-丁基-3-甲基咪唑([Bmim]OH)、咪唑基1-烯丙基-3-甲基咪唑([Amim]Im)、氢氧化1-烯丙基-3-甲基咪唑([Amim]OH)在甘油与碳酸二甲酯的酯交换反应中表现出优异的活性.其中,以[Bmim]Im离子液体为催化剂时甘油转化率为98.4%和甘油碳酸酯选择性接近100%.另外,该离子液体可以回收重复利用3次后甘油转化率仍可达92%,甘油碳酸酯选择性可近100%.此碱性离子液体催化方法具有反应结果较好、产物分离简单、条件温和以及环境友好等特点.  相似文献   

11.
Wei W  Ju H 《Electrophoresis》2005,26(3):586-592
A zwitterionic surfactant, dodecyldimethyl (2-hydroxy-3-sulfopropyl) ammonium (C12H25N+(CH3)2CH2CHOHCH2SO3-), named dodecyl sulfobetaine (DSB), was used as a novel modifier to coat dynamically capillary walls for capillary electrophoresis separation of basic proteins. The DSB coating suppressed the electroosmotic flow (EOF) in the pH range of 3-12. At high DSB concentration, the EOF was suppressed by more than 8.8 times. The DSB coating also prevented successfully the adsorption of cationic proteins on the capillary wall. Anions, such as Cl-, Br-, I-, SO4(2-), CO3(2-), and ClO4-, could be used as running buffer modifiers to adjust the EOF for better separation of analytes. Using this dynamically coated capillary, a mixture of eight inorganic anions achieved complete separation within 4.2 min with the efficiencies from 24,000 to 1,310,000 plates/m. In the presence of ClO4- as EOF adjustor, the separation of a mixture containing four basic proteins (lysozyme, cytochrome c, alpha-chymotrypsinogen A, and myoglobin) yielded efficiencies of 204,000-896,000 plates/m and recoveries of 88%-98%. Migration time reproducibility of these proteins was less than 0.5% relative standard deviation (RSD) from run to run and less than 3.1% RSD from day to day, showing promising application of this novel modifier in protein separation.  相似文献   

12.
Poly(glycidyl methacrylate-co-ethylene methacrylate) monoliths have been prepared in 100 μm i.d. capillaries and their epoxy groups hydrolyzed to obtain poly(2,3-dihydroxypropyl methacrylate-co-ethylene methacrylate) matrix. These polymers were then photografted in a single step with 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylic acid to afford stationary phases for a strong and a weak cation exchange chromatography, respectively. Alternatively, poly(ethylene glycol) methacrylate was used for grafting in the first step in order to enhance hydrophilicity of the support followed by photografting with 2-acrylamido-2-methyl-1-propanesulfonic acid or acrylic acid in the second step. These new columns were used for the separation of proteins and peptides. A mixture of ovalbumin, α-chymotrypsinogen, cytochrome c, ribonuclease A and lysozyme was used to assess the chromatographic performance for large molecules while a cytochrome c digest served as a model mixture of peptides. All tested columns featured excellent mass transfer as demonstrated with very steep breakthrough curves. The highest binding capacities were found for columns prepared using the two step functionalization. Columns with sulfonic acid functionalities adsorbed up to 21.5 mg/mL lysozyme while the capacity of the weak cation exchange column functionalized with acrylic acid was 29.2 mg/mL.  相似文献   

13.
A capillary electrophoresis-mass spectrometry (CE-MS) method using sheath liquid electrospray ionization interfacing was studied and optimized for the analysis of intact basic proteins. To prevent protein adsorption, capillaries with a noncovalent positively charged coating were utilized. Capillaries were coated by subsequent rinsing with solutions of Polybrene, dextran sulfate and Polybrene. The coating proved to be fully compatible with MS detection, causing no background signals and ionization suppression. The composition of the sheath liquid and BGE was optimized using the model proteins α-chymotrypsinogen A, ribonuclease A, lysozyme and cytochrome c. A sheath liquid of isopropanol-water-acetic acid (75:25:0.1, v/v/v) at 2 μL min−1 resulted in optimal signal intensities for most proteins, but caused dissociation of the heme group of cytochrome c. Optimum protein responses were obtained with a BGE of 50 mM acetic acid (pH 3.0), which allowed a baseline separation of the test protein mixture. Several minor impurities present in the mixture could be detected and provisionally identified using accurate mass and a protein modification database. The selectivity of the CE-MS system was investigated by the analysis of acetylated lysozyme. Eight highly related species, identified as non-acetylated lysozyme and lysozyme acetylated in various degrees, could be distinguished. The CE-MS system showed good reproducibility yielding interday (three weeks period) RSDs for migration time and peak area within 2% and 10%, respectively. With the CE-MS system, determination coefficients (R2) for protein concentration and peak area were higher than 0.996, whereas detection limits were between 11 and 19 nM.  相似文献   

14.
In this paper we examine whether adding a more retained protein to the feed will mitigate displacer–protein interactions in the column, thus affecting the displacement modality that occurs (chemically selective vs. traditional displacement chromatography). STD-NMR experiments were carried out to probe displacer–protein interactions for the chemically selective displacer chloroquine diphosphate and the results indicated that this displacer only had measurable interactions with the protein α-chymotrypsinogen A. For a two component feed mixture containing ribonuclease A and α-chymotrypsinogen A, the separation resulted in the displacement of ribonuclease A, with the more hydrophobic α-chymotrypsinogen A remaining on the column. On the other hand, when the experiment was repeated with cytochrome c added to the feed, all three feed proteins were displaced. Column simulations indicated that the combination of sample self-displacement occurring during the introduction of the feed, along with the dynamics of the initial displacement process at the column inlet was responsible for this behavior. These results indicate that for this class of hydrophobic-based selective displacers, in order for the protein to be selectively retained, the protein should be the most strongly retained feed component.  相似文献   

15.
A simple and economical CE method has been developed for the analysis of four model basic proteins by employing N‐methyl‐2‐pyrrolidonium methyl sulfonate ionic liquid (IL) as the dynamic coating material based on the interaction of both between electrostatic attraction and hydrogen bond, and between the organic cations of IL and the inner surface of bare fused‐silica capillary. The N‐methyl‐2‐pyrrolidonium‐based IL modified capillary not only generated a stable suppressed electroosmotic flow, but also effectively eliminated the wall adsorption of proteins. Several important parameters such as the IL concentration, pH values, and concentrations of the background electrolyte were optimized to improve the separation of basic proteins. Consequently, under the optimum separation conditions, a satisfied separation of basic proteins including lysozyme, cytochrome c, ribonuclease A, and α‐chymotrypsinogen A with theoretical plates ranging from 2.09 × 105 to 4.48 × 105 plates/m had been accomplished within 15 min. The proposed method first illustrated the effect of hydrogen bond between coating material and inner capillary surface on the coating, which should be a new strategy to design and select more effective coating materials to form more stable coatings in CE.  相似文献   

16.
A novel positively charged surfactant N‐dodecyl‐N,N‐dimethyl‐(1,2‐propandiol) ammonium chloride was used for the dynamic coating of the inner wall of a silica capillary. This paper covers the evaluation of dynamic coating and study of the influence of the analysis conditions for the magnitude and direction of electroosmotic flow as well as for the effective and selective separation of chosen proteins (ribonuclease A, cytochrome c, lysozyme, and myoglobin). The concentration of 0.1 mM of N‐dodecyl‐N,N‐dimethyl‐(1,2‐propandiol) ammonium chloride enabled the reversal of the electro‐osmotic flow, however, to separate basic as well as neutral proteins the higher concentration of the studied surfactant was necessary. The final conditions for the separation of studied proteins were set at 100 mM sodium acetate pH 5.5 with 10.0 mM of the studied surfactant. The results were also compared with those of two commercially available cationic surfactants, cetyltrimethylammonium bromide and dodecyltrimethylammonium bromide. Additionally, the developed method for protein separation was applied for the determination of lysozyme in a cheese sample. The limits of detection and quantification of lysozyme were 0.9 and 3.0 mg/L, respectively. The mean concentration of lysozyme found in the cheese sample was 167.3 ± 10.3 mg/kg.  相似文献   

17.
Spermine-graft-dextran (Spe-g-Dex) copolymer was synthesized and used as a non-covalent coating for the separation of proteins and neurotransmitters by capillary electrophoresis. The coating was obtained via flushing the capillary with 1.0% Spe-g-Dex copolymer solution for 2 min. Electroosmotic flow (EOF) was strongly suppressed, ranging from −1.60 × 10−9 to 3.65 × 10−9 m2 V−1 s−1. Effect of experimental conditions, such as the copolymer concentration, the concentration and pH of the background electrolyte (BGE), on the Spe-g-Dex coating was investigated. Separation of lysozyme, cytochrome c, ribonuclease A and α-chymotrypsinogen yielded high separation efficiencies ranging from 141 000 to 303 000 plates/m and recoveries from 85.4% to 98.3% at pH 4.0 (284.0 mM sodium acetate–acetic acid buffer, I = 50 mM). Run-to-run repeatabilities and day-to-day, and capillary-to-capillary reproducibilities were all below 1.7%. In addition, Spe-g-Dex coating allowed the successful separation of five neurotransmitters, 5-hydroxytryptamine, dopamine, epinephrine, isoprenaline, dobuamine at pH 4.0 with high separation efficiencies of 290 000–449 000 plates/m.  相似文献   

18.
A new physically adsorbed capillary coating for capillary electrophoresis-mass spectrometry (CE-MS) of basic proteins is presented, which is easily obtained by flushing the capillary with a polymer aqueous solution for two min. This coating significantly reduces the electrostatic adsorption of a group of basic proteins (i.e., cytochrome c, lysozyme, and ribonuclease A) onto the capillary wall allowing their analysis by CE-MS. The coating protocol is compatible with electrospray inonization (ESI)-MS via the reproducible separation of the standard basic proteins (%RSD values (n = 5) < 1% for analysis time reproducibility and < 5% for peak heights, measured from the total ion electropherograms (TIEs) within the same day). The LODs determined using cytochrome c with total ion current and extracted ion current defection were 24.5 and 2.9 fmol, respectively. Using this new coating lysozymes from chicken and turkey egg white could be easily distinguished by CE-MS, demonstrating the usefulness of this method to differentiate animal species. Even after sterilization at 120 degrees C for 30 min, lysozyme could be detected, as well as in wines at concentrations much lower than the limit marked by the EC Commission Regulation. Adulteration of minced meat with 5% of egg-white could also be analysed by our CE-MS protocol.  相似文献   

19.
1,2-Dioleyl-3-trymethylammoniumpropane (DOTAP) lipid vesicles were employed as coating precursors to obtain a semipermanent cationic lipid bilayer in silica capillary. The coating procedure was relatively fast and simple. Reliable results for the separation of four basic proteins (alpha-chymotrypsinogen A, ribonuclease A, cytochrome C, lysozyme) were obtained by using an acetate buffer under acidic conditions. The RSDs of the migration times were not higher than 0.5% run-to-run and about 1% day-to-day (3 days), while the RSDs of the peak areas were within 7% day-to-day (3 days). The day-to-day RSD of the EOF mobility of about 1%, confirmed that the DOTAP coating was stable for the separation of basic proteins, under acidic buffers. In addition to basic proteins the DOTAP coating was found suitable under acidic conditions for the repeatable separation of neutral steroids. The potential of DOTAP as a carrier in background electrolyte solution was studied.  相似文献   

20.
We have 3D printed and fabricated micro free-flow electrophoresis (µFFE) devices in acrylonitrile butadiene styrene (ABS) that exhibit minimal surface adsorption without requiring additional surface coatings or specialized buffer additives. 2D, nano LC–micro free flow electrophoresis (2D nLC × µFFE) separations were used to assess both spatial and temporal broadening as peaks eluted through the separation channel. Minimal broadening due to wall adsorption was observed in either the spatial or temporal dimensions during separations of rhodamine 110, rhodamine 123, and fluorescein. Surface adsorption was observed in separations of Chromeo P503 labeled myoglobin and cytochrome c but was significantly reduced compared to previously reported glass devices. Peak widths of < 30 s were observed for both proteins. For comparison, Chromeo P503 labeled myoglobin and cytochrome c adsorb strongly to the surface of glass µFFE devices resulting in peak widths >20 min. A 2D nLC × µFFE separation of a Chromeo P503 labeled tryptic digest of BSA was performed to demonstrate the high peak capacity possible due to the low surface adsorption in the 3D printed ABS devices, even in the absence of surface coatings or buffer additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号