首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
P(MMA—MAA)/PEO氢键复合物的增容效应   总被引:1,自引:0,他引:1  
本文研究了P(MMA-MAA)/PEO氢键复合物对一些聚合物共混体系的增容效应。首次用机械共混方法制备了P(MMA-MAA)/PEO氢键复合物。该复合物不能被甲醇革取,其热失重行为不是其组分聚合物的加和,表明此复合物不是简单的共混物。实验结果证实,该复合物可以改进PMMA/PEO体系的相容性,改善PVC共混体系的力学性能和加工性能。  相似文献   

2.
The basic feature of polymers is their multi-order structure. Structure change at each level offers a possibility tomodify polymer properties and to develop new polymer materials. Therefore,novel polymer materials can be developed by tailoring their chain structure through chemical bonding among atoms, i.e., via the traditional molecular chemistry methods, e.g., polymerization of new monomer, controlling chain length (molecular weight and molecular weight distribution) and stereoregularity, copolymerization of different kinds of monomers, controlling sequence distribution,block of graft length of copolymer, etc., which have been the focus of polymer chemistry for several decades, as well as by tailoring specific supramolecular architecture using molecules as building block through intermolecular interactions, i.e., via supramolecular science methods, e.g., molecular self-assembly, intermacromolecular complexation, etc., which is a modern and fast-developing academic research field.This paper reports novel polymer materials prepared through intermacromolecular complexation,e.g., a new polymer solid electrolyte poly(metyl methacrylate-methacrylic acid)[P(MMA-MAA)]/poly(ethylene oxide) (PEO)/A2-LiClO4 developed by intermacromolecular complexation through hydrogen bonding, which has enhanced ambient ionic conductivity and fairly good mechanical and film-forming properties, a new polymer microcomposite poly(acrylonitrile-acrylamide-acrylic acid) [P(AN-AM-AA)]/poly(vinyl alcohol) (PVA) reinforced by the twin molecular chain microfibrils formed through intermacromolecular complexation of P(AN-AM-AA) with PVA through hydrogen bonding, which exhibits much better mechanical properties than its constituents and could be used to manufacture PVA based complexed fibers with higher modulus and better dyeability, a new polymer flooding agent poly(acrylamide-acrylic acid)[P(AM-AA)]/poly(acrylamide- dimethyldiallylammonium chloride) [P(AM-DMDAAC)] developed by intermacromolecular complexation of the oppositely charged polyions through Coulomb forces,which shows much higher viscosity and better resistance to temperature, shear rate and salt than its constituents, and has potential application in enhanced oil recovery.  相似文献   

3.
通过溶液折光指数和粘度测定,研究了聚丙烯酸(PAA)与聚氧化乙烯(PEO)高分子链间在复合溶液中的相互作用和PAA/PEO高分子氢键复合溶液的结构与粘度,研究了复合溶液粘度随溶液pH值的变化规律及不同浓度时剪切速率对复合溶液粘度和复合增粘效果的影响。结果表明:PAA/PEO复合溶液结构不同于PAA和PEO两组分聚合物溶液结构,PAA与PEO高分子链间的氢键相互作用形成构象更为伸展、流体力学体积列大  相似文献   

4.
Zheng  Sixun    Han  Chen  Chunxia  Nie  Kangming  Guo  Qipeng 《Colloid and polymer science》2003,281(11):1015-1024
Epoxy resin (ER)/poly(ethylene oxide) (PEO) and/or poly(e-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene (THB) were prepared via the in situ curing reaction of epoxy monomers in the presence of PEO and/or PCL, which started from the initially homogeneous mixtures of DGEBA, THB and PEO and/or PCL. The miscibility and the intermolecular specific interactions in the thermosetting polymer blends were investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The two systems displayed single and composition-dependant glass transition temperatures (T gs), indicating the full miscibility of the thermosetting blends. The experimental T gs of the blends can be well accounted for by Gordon-Taylor and Kwei equations, respectively. The T g-composition behaviors were compared with those of poly(hydroxyether of bisphnol A) (Phenoxy) blends with PEO and PCL. It is noted that the formation of crosslinked structure has quite different effects on miscibility and intermolecular hydrogen bonding interactions for the thermosetting polymer blends. In ER/PEO blends, the strength of the intermolecular hydrogen bonding interactions is weaker than that of the self-association in the control epoxy resin, which is in marked contrast to the case of Phenoxy/PEO blends. This suggests that the crosslinking reduces the intermolecular hydrogen bonding interactions, whereas the intermolecular hydrogen bonding interactions were not significantly reduced by the formation of the crosslinking structure in ER/PCL blends.  相似文献   

5.
Poly(hydroxyether of phenolphthalein) (PPH) was synthesized through the polycondensation of phenolphthalein with epichlorohydrin. It was characterized by Fourier transform infrared (FTIR) spectroscopy, NMR spectroscopy, and differential scanning calorimetry (DSC). The miscibility of the blends of PPH with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PPH/PEO blends prepared via casting from N,N‐dimethylformamide possessed single, composition‐dependent glass‐transition temperatures. Therefore, the blends were miscible in the amorphous state for all compositions. FTIR studies indicated that there were competitive hydrogen‐bonding interactions with the addition of PEO to the system, which were involved with OH…O?C〈, ? OH…? OH, and ? OH vs ether oxygen atoms of PEO hydrogen bonding, that is both intramolecular and intermolecular, between PPH and PEO). Some of the hydroxyl stretching vibration bands significantly shifted to higher frequencies, whereas others shifted to lower frequencies, and this suggested the formation of hydrogen bonds between the pendant hydroxyls of PPH and ether oxygen atoms of PEO, which were stronger than the intramolecular hydrogen bonding between hydroxyls and carbonyls of PPH. The FTIR spectra in the range of carbonyl stretching vibrations showed that the hydroxyl‐associated carbonyl groups were partially set free because of the presence of the competitive hydrogen‐bonding interactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 466–475, 2003  相似文献   

6.
The method of enhanced Rayleigh scattering spectroscopy (ERS) was developed to investigate the complexation of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in semidilute polymer solutions. Based on the Ornstein‐Zernike equation, the relationship between macromolecular static correlation length and ERS intensity was presented. Moreover, the ERS spectra were calculated by the moving window two‐dimensional (MW2D) correlation spectroscopy to get detailed information of the polymer complexation. The results indicated that the ERS spectroscopy characteristics of the polymer mixtures have similar trend, and the ERS intensity promptly increases as the macromolecular chains contract. The increase of ERS intensity showed that the degree of complexation between PAA and PEO increases when the pH value decreases. The complexation results from the collapse of macromolecular chains, which is induced by the PAA chains contracting and the enhanced association between PAA and PEO chains because of the hydrogen bond formation. In addition, the association resulting from the complexation of PAA and PEO in solution was demonstrated by the MW2D correlation spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1847–1852, 2010  相似文献   

7.
Thermosetting blends composed of phloroglucinol‐cured bisphenol S epoxy resin and poly(ethylene oxide) (PEO) were prepared via the in situ curing reaction of epoxy in the presence of PEO, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol S, phloroglucinol, and PEO. The miscibility of the blends after and before the curing reaction was established on the basis of thermal analysis (differential scanning calorimetry). Single and composition‐dependent glass‐transition temperatures (Tg's) were observed for all the blend compositions after and before curing. The experimental Tg's could be explained well by the Gordon–Taylor equation. Fourier transform infrared spectroscopy indicated that there were competitive hydrogen‐bonding interactions in the binary thermosetting blends upon the addition of PEO to the system, which was involved with the intramolecular and intermolecular hydrogen‐bonding interactions, that is, OH···O?S, OH···OH, and OH, versus ether oxygen atoms of PEO between crosslinked epoxy and PEO. On the basis of infrared spectroscopy results, it was judged that from weak to strong the strength of the hydrogen‐bonding interactions was in the following order: OH···O?S, OH···OH, and OH versus ether oxygen atoms of PEO. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 359–367, 2005  相似文献   

8.
To investigate the effects of solvent type and temperature on the interpolymer complexation via hydrogen bonding, a study was made on the complex system of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in two kinds of solvent systems, pure water and water-MeOH (30 wt%) mixed solvent, at various temperatures using the Ubbelohde viscometer, pH-meter, and UV spectrophotometer. The repeating unit mole ratio at the most optimum complexation as confirmed by the reduced viscosity measurement was shifted from [PEO]/[PAA] ≈ 1.25:1 to 1.5:1 by the addition of methanol to water. From the UV measurement, the deviation from the “isosbestic point” (where the absorbance of the solution remains constant) has presented another evidence for the solvent effect on complexation. In addition, the analysis of the changes in thermodynamic properties upon complexation as well as the fraction of carboxyls associated with PEO oxygens and the complex stability constant as estimated by potentiometric titration at several temperatures reveals that the complex formation in mixed solvent became more unfavorable compared to that in pure solvent at high temperatures above 30°C. This could be explained by considering that in water the hydrophobic interaction as well as the hydrogen bonding may greatly contribute to the stabilization of the polymer complex formed, while in water-methanol the main stabilizing force would be the hydrogen bonding alone.  相似文献   

9.
《先进技术聚合物》2018,29(5):1447-1455
In this work, thermoplastic poly (vinyl alcohol) (PVA) with improved processability for fused deposition modeling (FDM) was successfully prepared via intermolecular complexation and plasticization. The glycerol and water, which were non‐toxic and have a complementary structure with PVA, were adapted to realize FDM processing of PVA, thus providing a novel biomaterial with FDM processability. The result showed that the water and glycerol could interrupt hydrogen bonding in PVA and reduce the melting point of PVA to 127.4°C. Moreover, the water fraction of the plasticizer had a significant effect on the FDM processability and usability of the final parts. When the water fraction was greater than 75%, the PVA/plasticizer was unsuitable for FDM processing. However, when the water fraction was lower than 25%, the glycerol precipitated from the modified PVA. Thus, a mixture of 50% water and 50% glycerol was most suitable for FDM processing. A 0.3 mm layer thickness with a nozzle temperature of 175°C was chosen as the optimal processing condition for FDM using thermoplastic PVA. Finally, complex PVA parts with high dimensional accuracy, good mechanical properties, and designated structures were fabricated by FDM machine.  相似文献   

10.
The synthesis of intrinsic flame retardant copolymer by copolymerization with reactive flame retardants is the most potential method to prepare transparent and flame retardant poly (methyl methacrylate) (PMMA) at present,but the main challenge of this method is that the copolymer usually has poor mechanical properties and heat resistance. In this work, the hydrogen bond enhancement strategy is adopted, and the flame retardant PMMA with excellent comprehensive properties is obtained by ternary copolymerization with methyl methacrylate (MMA) as matrix unit, diethyl (methacryloyloxymethyl) phosphonate (DEP) as flame retardant unit and methacrylamide (MAA) as hydrogen bond unit. Due to the formation of intermolecular hydrogen bond via MAA unit, the storage modulus, flexural strength and impact strength of the terpolymer containing 15 mol% MAA are 48%, 19%, and 24% higher than those of the copolymer of MMA and DEP, and its hardness, glass transition temperature and load thermal deformation temperature (increased by 7°C) are also superior. Moreover, owing to the gas-phase dilution and charring flame retardancy of MAA unit, the terpolymer shows increased limiting oxygen index (24.3%) and UL94 rating (V-1). This work not only provides a promising flame retardant PMMA for practical application, but also offers a new strategy to design flame retardant polymers with good mechanical properties.  相似文献   

11.
The phenomenon of self-assembly of aggregates formed by relatively short chains of poly(vinyl alcohol) (PVA) on the long macromolecules of polyacrylamide (PAA) in aqueous medium are discussed. PVA and PAA form intermolecular polycomplexes (InterPC) of a constant composition independently on a ratio of polymer components. The complex formation between high-molecular-weight PAA and relatively low-molecular-weight poly(ethylene oxide) (PEO) are considered also. PEO with M ⩽ 4·104 g.mol−1 weakly interacts with PAA. The polymer-polymer interaction can be intensified when the part of amide groups (∼20 mol %) on PAA chain to transform into the carboxylic groups. InterPCs formed by PEO and initial or modified PAA have associative structure with friable packing of the polymer segments. They are stabilized by the hydrogen bond system.  相似文献   

12.
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003  相似文献   

13.
采用差热扫描分析、红外光谱、固体核磁、小角X光散射等方法研究了聚(β-羟基丁酸酯-co-β-羟基戊酸酯(P(HB-co-HV))/聚(对-羟基苯乙烯)(简称PVPh)共混物的相容性和形态。结果表明两组分间形成较强的分子间氢键,形成完全相容的共混体系。固体核磁结果表明P(HB-co-HV)/PVPh(50/50)在3.4nm尺寸上是完全均相的。小角X光散射结果表明,在等温结晶的共混物中无定形的PVPh分子分散在P(HB-co-HV)片晶之间与非晶的P(HB-co-HV)分子形成非晶区,从而使非晶区加宽,长周期增加。  相似文献   

14.
The complexation of the ferrocene-dipeptide conjugate bearing one dipeptide chain of heterochiral sequence (-l-Ala-d-Pro-NHPy) with PdCl2(MeCN)2 was demonstrated to afford the 2:1 trans palladium complex, which is present in the pseudo-helical conformation and γ-turn-like structure in the crystal structure through complexation and intramolecular hydrogen bonding. Furthermore, the left-handed pseudo-helical molecular arrangement was formed through a network of intermolecular hydrogen bonds.  相似文献   

15.
Covalently bound protoporphyrin IX was used as a fluorophore to investigate the interpolymer complex formation between the poly(carboxylic acid)s, PMAA/PAA and poly(N-vinyl pyrrolidone), PVP, poly(ethylene oxide), PEO or poly(ethylene glycol), PEG. Absorption and emission spectral properties of protoporphyrin IX bound to PAA, PMAA and PVP have been studied. Protoporphyrin IX in poly(MAA-co-PPIX) was found to be present in the dimer or higher aggregated form at low pH due to the environmental restriction imposed by the polymer whereas in the case of poly(AA-co-PPIX) and poly(VP-co-PPIX), PPIX exists in monomeric form. The fluorescence intensity and lifetime of PPIX bound to poly(carboxylic acid)s increase on complexation through hydrogen bonding with PVP, PEO and PEG due to the displacement of water molecules in the vicinity of the PPIX. Poly(MAA-co-PPIX) shows longer fluorescence lifetime due to the more compact interpolymer complexation as compared to poly(AA-co-PPIX) due to the enhanced hydrophobicity of PMAA. Poly(VP-co-PPIX) shows a decrease in the fluorescence lifetime on complexation with PMAA or PAA due to the hydrophilic and microgel like environment of the fluorophore bound to PVP. The contrasting behaviour of the same polymer adduct with respect to the site of the fluorophore is interpreted to be due to the solvent structure which determines the environment of the fluorophore.  相似文献   

16.
The FT-infrared and Raman microscopy spectra of the 2',6'-dimethoxyflavone and its 1:1 complex with formic acid in solid state have been recorded and analysed. Some vibrational components appear as specific to the cis-rotamer of formic acid in the crystalline sample, especially the CH group stretching vibration feature. The broad and intense infrared absorption observed in the range 3400-1900 cm(-1) and assigned to the hydrogen bonded OH group stretching vibration exhibits the characteristic ABC structure of strong hydrogen bonded complexes. This ABC pattern corroborates previous X-ray crystallographic data showing that cis-formic acid is strongly hydrogen bonded to the flavonic compound. The inclusion complex is quite unstable and the infrared spectrum clearly shows that formic acid disappears after a period of a few months. In order to get some information on the stability criterions of the intermolecular hydrogen bonded complex, semiempirical AM1 calculations have been investigated. The comparison of the calculated heats of complexation (deltacH) for chelates involving the cis- and trans-conformers of formic acid suggests that the reaction of hydrogen bonding complexation with the cis-rotamer is surely favoured.  相似文献   

17.
刘侠  刘守信  李芳  房喻  王忆娟  余娟 《化学学报》2007,65(19):2163-2168
利用UV透光率、荧光探针和荧光各向异性研究了稀水溶液中聚N-异丙基丙烯酰胺(PNIPAM)与接枝共聚物聚丙烯酸接枝聚N-异丙基丙烯酰胺[P(AA-g-NIPAM)]间的络合作用. 结果表明, PNIPAM和P(AA-g-NIPAM)之间通过氢键作用形成络合物. 络合作用依赖于溶液pH及P(AA-g-NIPAM)接枝共聚物中AA的相对含量. 溶液pH越小, AA相对含量越高, 络合作用越强. 这种络合作用使得聚合物主链变得较为收缩, 体系亲水性降低, 表现出一定的疏水性.  相似文献   

18.
Miscibility and hydrogen bonding interaction have been investigated for the binary blends of poly(butylene adipate‐co‐44 mol % butylene terephthalate)[P(BA‐co‐BT)] with 4,4'‐thiodiphenol (TDP) and poly(ethylene‐ oxide)(PEO) with TDP; and the ternary blends of P(BA‐co‐BT)/PEO/TDP by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicated that the binary blends of P(BA‐co‐BT)/TDP and PEO/TDP were miscible because each blend showed only one composition‐dependent glass‐transition over the entire range of the blend composition. The formation of intermolecular hydrogen bonds between the hydroxyl groups of TDP and the carbonyl groups of P(BA‐co‐BT), and between the hydroxyl groups of TDP and the ether groups of PEO was confirmed by the FTIR spectra. According to the glass‐transition temperature measured by DSC, P(BA‐co‐BT) and PEO, their binary blends were immiscible over the entire range of blend composition, however, the miscibility between P(BA‐co‐BT) and PEO was enhanced through the TDP‐mediated intermolecular hydrogen bonding interaction. It was concluded that TDP content of about 5–10% may possibily enhance miscibility between P(BA‐co‐BT) and PEO via a hydrogen bonding interaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2971–2982, 2004  相似文献   

19.
以水和乙醇作混合溶剂,用逐步滴加甲基丙烯酸甲酯的方法,通过自由基聚合,由溶解性和共聚活性差异较大的两种单体MMA和二甲基二烯丙基氯化铵合成了新型含阳离子共聚物聚,并用IR和^1H-NMR进行了分析表征。该共聚物溶于丙酮和水组成的二元溶剂,并与P(MMA-MAA)有较强的分子复合能力。  相似文献   

20.
Abstract

Previously studies have shown that when 2-guanidinobenzimidazole complexes with a number of transition metal ions it tautomerises so that, in contrast to the free ligand structure, no intermolecular hydrogen bonding between bound ligands occurs. In the present study it is demonstrated that ligand deprotonation to yield bis(2-guanidinobenzimidazolo)nickel(II) restores much of the original hydrogen bonding capability of the uncomplexed ligand. The structure of this neutral complex is compared to the previously reported structure of its diprotonated derivative, bis(2-guanidinobenzimidazole)nickel(II) nitrate, as well as to the structure of the uncomplexed ligand. In contrast to the dicationic species, the neutral complex exists in two enantiomeric forms that assemble to form an extended supramolecular lattice, containing channels through its structure. The walls of the channels are made up of ‘strings’ of complex molecules and are held in position by hydrogen bonding between the bound ligands and dimethyl sulfoxide (solvent) molecules as well as water molecules. Some of the solvent molecules lie within the channels and some outside. The hydrogen bonding motif responsible for chain formation differs from that found in the free ligand structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号