首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周春于  杨俊玲  于振东 《化学通报》2018,81(10):914-918,923
以废弃的虾壳为原料制备壳聚糖,以壳聚糖为壳、磁性Fe_3O_4为核、液体石蜡为分散剂、T-80为乳化剂、戊二醛为交联剂制备了纳米Fe_3O_4@壳聚糖材料。利用扫描电镜、热重分析仪、红外光谱仪、X射线衍射仪对其进行了表征。结果显示,纳米Fe_3O_4@壳聚糖材料为表面光滑的球形结构,直径约75.82nm,壳聚糖和Fe_3O_4的质量比为2∶1。吸附动力学实验研究表明,纳米Fe_3O_4@壳聚糖材料对Cu~(2+)吸附符合准二级动力学,以化学吸附为主,平衡吸附容量为17.32mg/g。吸附等温线实验研究表明,吸附符合Freundlic模型,纳米Fe_3O_4@壳聚糖材料与Cu~(2+)之间的交互作用强烈,最大吸附容量为213.68mg/g。  相似文献   

2.
采用氯化钙、环氧氯丙烷交联改性,制备了改性果胶磁性微粒,分别用红外光谱、扫描电镜、X-射线衍射对样品进行了表征并对实验条件进行了探究。实验结果表明:环氧氯丙烷改性果胶-Fe_3O_4微球吸附剂对Cu~(2+)有较好的吸附。该吸附符合准二级动力学方程,主要为化学吸附。当Cu~(2+)的初始浓度160 mg·L~(-1),吸附剂添加量为20 mg,反应时间为90 min,反应温度为60℃时的单位吸附量为74.89 mg·g~(-1)。研究还表明EDTA对磁性微球的洗脱效果最佳。环氧氯丙烷改性果胶-Fe_3O_4微球吸附剂对香螺、海螺和黄蚬子三种贝类的酶解液中Cu~(2+)进行脱除实验,去除率分别为85.1%,82.4%和83.5%,效果良好。  相似文献   

3.
以氧化石墨烯(GO)和聚乙烯亚胺(PEI)为反应物,采用共混法制备PEI/GO,然后将Fe_3O_4纳米颗粒分散沉积到PEI/GO表面,得到了复合材料Fe_3O_4/PEI/GO。利用傅里叶红外光谱(FT-IR)、透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等方法对该材料进行表征,并研究了其对Cu~(2+)的吸附性能。结果表明,PEI与GO的羧基反应生成了酰胺键,Fe_3O_4成功沉积在GO表面,GO层状结构的规整性被破坏。Freundlich等温吸附模型和准二级动力学模型能更好地拟合Cu~(2+)在Fe_3O_4/PEI/GO表面的吸附过程,说明该吸附主要受化学作用控制,可能是Fe_3O_4/PEI/GO表面的胺基、羧基、羟基等活性基团与Cu~(2+)发生了离子交换或络合反应所致。  相似文献   

4.
以壳聚糖为原料,先制备O-羧甲基壳聚糖,再与琥珀酸酐水溶剂反应合成出O-羧甲基-N-琥珀酰壳聚糖衍生物,采用1H-NMR、FT-IR和TG表征其结构。系统研究了O-羧甲基-N-琥珀酰壳聚糖对水溶液中Cu~(2+)的吸附性能,主要考察了溶液的p H值、温度、吸附时间等因素对吸附的影响及吸附热力学性能。结果表明,O-羧甲基-N-琥珀酰壳聚糖对Cu2+平衡吸附量达到133.5mg/g,动力学符合准二级动力学模型,对Cu~(2+)的吸附符合Freundlich等温吸附模型。红外表明,吸附主要依靠分子结构中的羧基和氨基。  相似文献   

5.
以壳聚糖为原料,先在氨基上引入羧甲基制备出N-羧甲基壳聚糖,再和环氧氯丙烷发生交联反应,合成出新型交联羧甲基壳聚糖,FTIR表征其结构。研究了交联羧甲基壳聚糖对Pb2+的吸附性能,探讨了交联剂用量、铅离子溶液的pH值、温度、吸附时间等因素对其吸附性能的影响,并考察了交联羧甲基壳聚糖对铅离子吸附动力学和热力学实验。实验结果表明,交联羧甲基壳聚糖对铅离子的吸附量优于壳聚糖,平衡吸附量可达297.6 mg/g。交联羧甲基壳聚糖对铅离子的吸附符合准二级动力学模型和Langmuier等温吸附,吸附主要依靠结构中的羧基和氨基基团。  相似文献   

6.
利用二茂铁制备磁性碳基材料(Fe_3O_4@C),通过壳聚糖(CS)功能化,制备CS改性Fe_3O_4@C复合吸附材料(Fe_3O_4@C-CS)。利用红外光谱(FTIR)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重分析(TGA)和X射线光电子能谱(XPS)等对Fe_3O_4@C-CS表征分析,并通过改变浓度、温度、时间、pH和阳离子等条件系统研究对水中已配位的三价铬(Cr(Ⅲ)-EDTA)的吸附性能。结果表明Fe_3O_4@C已经成功被CS功能化,在pH=4.0、反应温度25℃、投加量0.4 g·L~(-1)时,吸附等温线符合Langmuir模型,理论最大吸附量为12.63 mg·g~(-1),吸附动力学符合拟二级动力学模型,吸附行为是自发进行的吸热过程。结合吸附实验结果和XPS表征分析,静电吸附和配位作用是Fe_3O_4@C-CS吸附剂去除水中Cr(Ⅲ)-EDTA的主要机制。4次吸附-脱附循环后,Fe_3O_4@C-CS对水中Cr(Ⅲ)-EDTA仍具有较高的吸附效率。  相似文献   

7.
采用共沉淀法制备磁性Fe_3O_4纳米粒子,然后在乳化体系中,以戊二醛为交联剂,通过席夫碱反应制备了改性磁性壳聚糖微球(Fe_3O_4@CS)以及聚乙烯亚胺(PEI)改性磁性壳聚糖微球(Fe_3O_4@CS/PEI)。采用红外光谱、X射线粉末衍射、磁滞回线测定、扫描电子显微镜和动态光散射对微球的结构、粒径以及磁性进行了表征,通过紫外-可见分光光度计研究了微球对布洛芬的吸附能力和重复利用率。结果表明,在微球制备过程中发生的席夫碱反应不会对纳米Fe_3O_4的晶型产生影响。微球均呈现出规整的球形,分布较窄,且具有一定的磁响应性,对布洛芬的吸附模型符合Langmuir吸附等温模型和二级动力学模型。随着PEI用量的增加,微球对布洛芬的吸附能力增强,经Langmuir吸附方程拟合的最大吸附量为138.63 mg/g。同时,微球具有良好的重复使用效率,重复5次后仍能达到初始吸附量的90%以上。  相似文献   

8.
分别采用共沉淀法和混合法将花生壳生物炭(PSB)、木屑生物炭(WB)与羧甲基纤维素钠(CMC)复合并负磁制备了四种复合材料c-CMC@PSB-Fe_3O_4、c-CMC@WB-Fe_3O_4和m-CMC@PSB-Fe_3O_4、m-CMC@WB-Fe_3O_4。利用FTIR、SEM、EDS、XRD、BET等手段对样品进行表征,并研究了四种材料对Cu~(2+)的吸附效果。结果表明,四种材料由于成功引入CMC、Fe_3O_4,且材料具有较好的表面结构,四种材料以中孔为主,比表面积分别为98.292m~2·g~(-1)、95.934m~2·g~(-1)、29.877m~2·g~(-1)、27.402m~2·g~(-1)。当Cu~(2+)溶液初始浓度为40mg·L~(-1)、p H为6,吸附平衡时,共沉淀法制备的c-CMC@PSB-Fe_3O_4、c-CMC@WB-Fe_3O_4对Cu~(2+)去除率分别为86.91%、81.30%,远高于混合法制备的m-CMC@PSB-Fe_3O_4、m-CMC@WB-Fe_3O_4。而混合法制备过程相对简单,比较适用于工业生产,有望解决生物炭复合材料大批量生产的难题。  相似文献   

9.
过一硫酸盐催化活化技术因其可产生强氧化性活性氧化物种,可快速氧化降解并矿化有机污染物的优异性能而备受关注.本文成功制备了亚微米级Cu~0/Fe_3O_4复合物,发现其能多相催化过一硫酸盐产生单线态氧降解有机污染物.首先,以CuCl_2·2H_2O,FeCl_2·4H_2O和FeCl_3·6H_2O为铜源和铁源,水合肼为还原剂,采用水热法在180℃反应24 h制备了亚微米级磁性Cu~0/Fe_3O_4复合物.表征结果显示,所制材料为Cu~0和Fe_3O_4的复合物,颗粒大小约为220 nm;单一相Cu~0和Fe_3O_4晶体粒径分别为33.8和106.2 nm,而Cu~0/Fe_3O_4复合物中Cu~0和Fe_3O_4晶体粒径分别减为20.8和31.9 nm.这表明Cu~0和Fe_3O_4复合降低了Cu~0和Fe_3O_4晶体粒径,有利于Cu~0和Fe_3O_4的分散.BET测试结果表明,Cu~0/Fe_3O_4复合物比表面积为4.6 m~2/g,与Cu~0颗粒的(4.2 m~2/g)相当,但远小于Fe_3O_4的(15.6 m~2/g).制备的Cu~0/Fe_3O_4复合物可有效催化过一硫酸盐产生单线态氧降解罗丹明B、亚甲基蓝、金橙Ⅱ、苯酚和对氯酚.当Cu~0/Fe_3O_4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,Cu~0/Fe_3O_4复合物可在30 min内完全降解20μmol/L的罗丹明B、亚甲基蓝、金橙Ⅱ以及0.1 mmol/L的苯酚和对氯酚.对比试验显示,在相同条件下,Cu~0和Fe_3O_4颗粒分别可以降解28%和20%的罗丹明B.这表明Cu~0/Fe_3O_4复合物中的Cu~0和Fe_3O_4晶体在催化过一硫酸盐降解污染物的反应中具有协同作用,这主要来源于Cu~0/Fe_3O_4复合物中Cu~0和Fe_3O_4的晶体粒径变小和更好的分散.采用分光光度法测定了降解反应液中铜和铁离子的溶出量.当Cu~0/Fe_3O_4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,反应60 min后,降解液中铜和铁离子的浓度分别为0.22和0.1 mg/L,仅占复合物中总铜和总铁量的1.1%和0.2%,表明Cu~0/Fe_3O_4复合物具有较强的化学稳定性.所制Cu~0/Fe_3O_4复合物具有超顺磁性,借助磁场实现快速分离回收,可循环利用五次,表明其优越的催化稳定性.通过加入乙醇和叠氮化钠,考察了Cu~0/Fe_3O_4复合物催化活化过一硫酸盐体系中的活性氧化物种.发现100 mmol/L乙醇的加入对污染物的降解无明显影响,而加入同等量的叠氮化钠可完全抑制污染物的降解,表明Cu~0/Fe_3O_4复合物催化活化过一硫酸盐产生的主要活性氧物种为单线态氧.采用电子顺磁共振谱进一步证实了单线态氧的生成.基于以上研究,Cu~0/Fe_3O_4复合物催化活化过一硫酸盐的机理为Cu~0/Fe_3O_4作为一个电子媒介加速过一硫酸盐和污染物之间的电子转移,从而导致污染物被快速降解.该反应机理不同于常见的金属催化过一硫酸盐产生硫酸根和羟自由基的反应机理.我们推测,电导性优良的Cu~0在此催化反应中起着关键性作用.本催化方法可作为一种绿色的氧化技术用于环境污染物的氧化降解处理.  相似文献   

10.
以球磨后的粉煤灰磁珠(MS)颗粒为磁核,通过溶胶凝胶法和反相微乳液法依次包覆SiO_2和壳聚糖(CS),制备了MS@SiO_2@CS磁性微球。利用扫描电镜及能量色散谱仪、热重分析仪、红外光谱仪、X射线衍射仪、振动样品磁强计对所得样品的结构和磁性进行了系统表征。结果表明,磁珠颗粒表面实现了逐层包覆,较均匀的分散于壳聚糖基体中,MS@SiO_2@CS微球的比饱和磁化强度可达7.04 emu·g~(-1)。Cu~(2+)离子吸附实验表明,所得磁性壳聚糖微球对Cu~(2+)具有良好的吸附能力,最大吸附量可达11.08 mg·g~(-1);而且可通过磁选法高效固液分离。吸附动力学研究表明,MS@SiO_2@CS微球对Cu~(2+)离子的吸附符合准二级动力学模型,以化学吸附为主。  相似文献   

11.
石墨相的氮化碳(g-C_3N_4)已被广泛用于光催化、水分解、光子检测器、电池、以及光电阴极.与其他光催化材料相比,g-C_3N_4具有价格低廉,易制备,无毒无污染等优点.此外,C_3N_4具有适宜的带隙(2.7 eV),能有效地吸收可见光.有关C_3N_4的光催化研究很多,但是其降解效率受限于电子空穴对的快速复合.因此,为了提高C_3N_4光催化反应效率,需要对其进行改性.磁铁矿(Fe_3O_4)广泛用于光催化和芬顿/光-芬顿反应.Fe_3O_4晶体具有反式尖晶石结构,其中Fe~(2+)和Fe~(3+)同时存在.研究表明,磁铁矿在酸性条件下催化效果显著,然而,它的比表面积小,随着反应时间的推移,铁离子会溶出,不利于有机物降解反应.因此,近来许多研究着重于磁铁矿复合物的制备,以提高磁铁矿的稳定性及催化性能.本文通过惰性氛围高温焙烧三聚氰胺制备了g-C_3N_4,再通过氯化铁和乙酸钠在乙醇中于180°C溶剂热反应,制备Fe_3O_4纳米粒子,最后通过静电自组装过程制备出Fe_3O_4/g-C_3N_4纳米复合材料.利用X射线衍射(XRD),扫描电子显微镜(SEM)及X射线光电子光谱(XPS)等手段验证其组成和结构.XRD结果表明,Fe_3O_4/g-C_3N_4复合材料中可以清晰看到Fe_3O_4和g-C_3N_4的衍射峰,说明这两种材料的晶相得以保持.SEM和TEM结果表明,Fe_3O_4纳米颗粒很好地附着在g-C_3N_4薄片上.XPS结果表明,氮化碳中存在典型的三种N峰;此外还存在铁的两种价态.光-芬顿活性测试中,相同条件下,Fe_3O_4/g-C_3N_4在60 min内将罗丹明B(RhB)几乎降解完全,而单组份的Fe_3O_4或g-C_3N_4对RhB的降解小于50%.可见,复合后的Fe_3O_4/g-C_3N_4光催化性能得到很大提升.单g-C_3N_4本身由于快速的电子空穴复合以及对双氧水的弱亲和力,因而对Rh B降解效果差.单独的Fe_3O_4由于在中性或者碱性条件下反而会抑制光催化芬顿活性.对于制备的Fe_3O_4/g-C_3N_4复合材料,具有以下优点:(1)电子在Fe~(3+)和g-C_3N_4的LUMO轨道上的转移降低了电子-空穴对的复合;(2)Fe_3O_4均匀分布在g-C_3N_4上,对于H_2O_2的吸附提供了有利的高比表面积;(3)Fe_3O_4和g-C_3N_4之间的界面相互作用使得Fe_3O_4的稳定性提高.通过降解RhB的动力学研究,得到反应速率为0.02 min~(–1),属准一级反应.分析检测结果表明,光-芬顿反应后,RhB分子被彻底矿化降解,没有中间产物生成,最终降解为CO_2和水.同时,通过对辣根过氧化物酶(HRP)模拟催化进行测试,以3,3',5,5'-四甲基联苯胺盐酸盐(TMB)作为基质,同时添加双氧水和Fe_3O_4/g-C_3N_4,在pH值为4.5条件下,TMB可以被有效氧化.实验表明,Fe_3O_4/g-C_3N_4添加量为25 mg/ml时,对TMB氧化性能最佳.复合催化剂还用于多巴胺的催化氧化反应.结果表明,多巴胺的氧化反应速率常数为1.21 min~(–1),属一级动力学反应.总之,复合材料提高了Rh B的光催化降解活性和稳定性;对TMB和HRP亲和性好,表现出高的类过氧化酶反应活性;有效的多巴胺氧化反应表明其有望用于生物基氧化反应中.实验结果表明,本文发展的Fe_3O_4/g-C_3N_4复合材料为其他类型复合材料的制备与应用提供了新的思路.  相似文献   

12.
利用γ-氨基丙基-三乙氧基硅烷偶联剂与活化的介孔氧化硅表面的羟基反应制备硅烷化介孔氧化硅,然后以乙二醛为活化剂与壳聚糖反应,制备一种新型的介孔氧化硅交联壳聚糖复合材料。采用小角度X射线衍射仪(SAXRD)、红外光谱(IR)、透射电子显微镜(TEM)和比表面测试仪(BET)等表征产物的结构、形貌和孔径分布等,并使用原子吸收分光光度计(AAS)评价该复合物对Pb~(2+)的吸附去除性能。研究结果表明:介孔氧化硅交联壳聚糖复合材料对Pb~(2+)的去除率比单一的介孔氧化硅或壳聚糖有明显的提高,它对Pb~(2+)的等温吸附线符合Langmuir模型,在温度25℃和p H=4.5时,它对Pb~(2+)的饱和吸附量为97.8 mg·g~(-1),高于纯壳聚糖的饱和吸附量(87.6 mg·g~(-1))。  相似文献   

13.
孙尧  丁莹如 《催化学报》1984,5(2):130-137
用浸渍法制备了含3%Fe_2O_3的载体为γ-Al_2O_3的负载型氧化铁催化剂,并用MB,TEM,ESCA和AES对该催化剂在水煤气变换反应的各个阶段进行了测试。结果表明,在反应前催化剂上存在一种类似于FeAlO_3的含Fe~(3+)和Al~(3+)的表面氧化物。在反应条件下还原后,同时存在类似于FeAlO_3,FeAl_2O_4和Fe_3O_4的表面化合物,并且铁离子的分散度也提高了。  相似文献   

14.
以Fe_3O_4/多壁碳纳米管/壳聚糖(Fe_3O_4/MWCNTs/CS)磁性纳米粒子为吸附剂填装于固相萃取柱中,用于分离工业废水中的Cu~(2+),采用火焰原子吸收光谱法测定Cu~(2+)。当吸附剂用量为30mg,样品溶液体积为40.0mL,样品溶液pH 7.0,流量为30μL·s~(-1)时,用0.5mol·L~(-1)HCl以10μL·s~(-1)的流量进行洗脱,Cu~(2+)的富集倍数达40。Cu~(2+)的线性范围为0.1~30.0μg·L~(-1),检出限(3s/k)为0.012μg·L~(-1)。方法应用于实际样品的分析,加标回收率在98.9%~102%之间,测定值的相对标准偏差(n=3)小于4%。  相似文献   

15.
利用液相沉淀法可控合成了均匀的棒状CuFe_4O_x催化剂。通过原位X射线粉末衍射(XRD)、高分辨透射电子显微镜(TEM)及程序升温还原(TPR)等手段表征其晶相结构、形貌和还原性能。通过还原棒状CuFe_4O_x获得Cu~0/Fe_3O_4纳米棒,原位X射线光电子能谱(XPS)用于确定Cu~0/Fe_3O_4表面的相组成。通过液相沉淀法制备棒状CuFe_4O_x,在120℃保持3 h后加入Na2CO3溶液至pH等于9时所得棒状形貌最为规整。以异戊醇脱氢反应作为探针反应,比较了Cu~0/Fe_3O_4纳米棒和Cu~0/Fe_3O_4纳米颗粒的催化反应性能,发现Cu~0/Fe_3O_4纳米棒比Cu~0/Fe_3O_4纳米粒子具有更好的活性和稳定性,表明棒状Fe_3O_4担载的Cu纳米粒子具有更好的结构稳定性。  相似文献   

16.
采用离子交换法制备了具有核-壳结构的磁性十二烷基硫酸钠改性类水滑石Fe_3O_4@(SDSHTlc)纳米复合物,并利用透射电镜、粉末X-射线衍射、红外光谱、电感耦合等离子体发射光谱、元素分析等对其进行了表征。研究了Fe_3O_4@(SDS-HTlc)对甲基橙的吸附动力学和热力学。结果表明,Fe_3O_4@(SDSHTlc)对甲基橙有较好吸附效果,吸附动力学曲线符合准二级动力学方程;吸附等温线符合线性方程,吸附量随体系p H的增大和温度的升高均降低。在外部磁场下,30s内可从水溶液中分离出Fe_3O_4@(SDS-HTlc),这为去除水中疏水染料提供了简单的一步吸附处理方法。  相似文献   

17.
采用改进的Hummers法制备了氧化石墨烯,用水热法首次制备了Fe_3O_4/GO/PPy(聚吡咯)三元复合粒子用于处理含2-硝基-1,3-苯二酚(NRC)的废水,研究了其对水中NRC的吸附性能。采用紫外-可见吸收光谱(UV-Vis)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计及ζ电位等对所制备复合粒子的结构进行了表征;研究了溶液pH值、吸附剂用量、NRC的初始浓度、吸附时间和温度对吸附NRC的吸附性能的影响,并对吸附过程进行了吸附动力学模拟。结果表明:制备的Fe_3O_4/GO/PPy复合材料为层状分散结构,PPy及Fe_3O_4颗粒无规则地镶嵌在石墨烯片层之间。Fe_3O_4颗粒为多面体晶体结构,尺寸为100~300 nm。Fe_3O_4/GO/PPy具有超顺磁性,40 s可以磁分离,NRC移除率达91.6%;在NRC浓度为200 mg·L~(-1)、pH=5±0.05、温度T=318 K、吸附剂用量10 mg·L~(-1)和吸附时间6 h的条件下Fe_3O_4/GO/PPy对NRC的吸附量最大,达到163.3mg·g~(-1)。NRC吸附动力学符合二级动力学模型,吸附等温线符合Langmuir模型。循环使用5次后,NRC的移除率由最初的91.6%下降至77.6%,说明Fe_3O_4/GO/Ppy磁性复合物的结构具有较好的稳定性,且可以再重复利用。  相似文献   

18.
合成了羧甲基-羟丙基-β-环糊精修饰的Fe_3O_4磁性纳米材料(CM-HP-β-CDCP-MNPs),建立了CM-HP-β-CDCP-MNPs固相萃取-火焰原子吸收分光光度法分离分析水样中Pb~(2+)、Cu~(2+)的方法。用红外光谱法、热重分析法、透射电子显微镜法对合成的磁性纳米材料进行了表征,并对CM-HP-β-CDCP-MNPs吸附Pb~(2+)、Cu~(2+)的吸附条件和脱附条件进行了优化。在优化条件下,CM-HP-β-CDCP-MNPs对Pb~(2+)的吸附率95%,对Cu~(2+)的吸附率85%,吸附容量为70.32 mg·g~(-1)(Pb~(2+))和26.53 mg·g~(-1)(Cu~(2+))。用所提方法对瘦西湖水样及大运河水样进行了测定,Pb~(2+)回收率为90.1%~103.8%,RSD为2.6%~5.0%;Cu~(2+)回收率为91.2%~104.9%,RSD为3.2%~4.6%。  相似文献   

19.
研究利用离子印迹技术,以离子交换树脂为支撑体,Cu~(2+)为模版离子,聚乙烯亚胺(PEI)为改性剂,环氧氯丙烷为交联剂,成功制得Cu~(2+)印迹树脂,并应用于水中Cu~(2+)的吸附。在吸附溶液pH值为5.5,温度为25℃时,印迹树脂对Cu~(2+)的吸附量达85.7mg·g~(-1),表现出对Cu~(2+)较好的吸附性能。印迹树脂对Cu~(2+)的吸附符合Lagergren准2级动力模型和Langmuir吸附等温模型,说明吸附主要以化学吸附为主,且吸附过程仅发生在表层,为单分子层吸附行为。当Cu~(2+)分别与Zn~(2+)、Pb~(2+)和Cd~(2+)共存时,印迹树脂能够选择性吸附Cu~(2+),其中吸附80min后Cu/Zn高达2.31。对印迹树脂经过4次洗脱后吸附容量不再降低,表明其良好的化学稳定性和吸附性。  相似文献   

20.
以壳聚糖与正硅酸四乙酯为原料,采用溶胶-凝胶法,用戊二醛辅助交联合成了磁性壳聚糖硅胶复合微球。通过红外光谱、扫描电镜、X-射线衍射等方法对磁性壳聚糖硅胶复合微球的形态和组成特性进行分析,制备的磁性复合微球中壳聚糖与硅胶材料复合均匀,材料粒径均一,机械强度较高。考察了制备的磁性壳聚糖硅胶复合微球对Cu~(2+)的吸附性能,结果表明微球对Cu~(2+)具有较好的吸附性能,吸附容量达到98.7mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号