首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the development of chain‐growth condensation polymerization for the synthesis of well‐defined π‐conjugated polymers via a new polymerization mechanism, catalyst‐transfer polymerization. We first studied the condensation polymerization of Grignard‐type hexylthiophene monomer with a Ni catalyst as a part of our research on chain‐growth condensation polymerization, and found that this polymerization also proceeded in a chain‐growth polymerization manner. However, the polymerization mechanism involving the Ni catalyst was different from that of previous chain‐growth condensation polymerizations based on substituent effects; the Ni catalyst catalyzed the coupling reaction of the monomer with the polymer, followed by the transfer of Ni(0) to the terminal C? Br bond of the elongated molecule. This catalyst‐transfer condensation polymerization is generally applicable for the synthesis of polythiophene with an etheric side chain and poly(p‐pheneylene), as well as for the synthesis of polyfluorene via the Pd‐catalyzed Suzuki–Miyaura coupling reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 753–765, 2008  相似文献   

2.
3.
Current approaches to synthesize π‐conjugated polymers (CPs) are dominated by thermally driven, transition‐metal‐mediated reactions. Herein we show that electron‐deficient Grignard monomers readily polymerize under visible‐light irradiation at room temperature in the absence of a catalyst. The product distribution can be tuned by the wavelength of irradiation based on the absorption of the polymer. Conversion studies are consistent with an uncontrolled chain‐growth process; correspondingly, chain extension produces all‐conjugated n‐type block copolymers. Preliminary results demonstrate that the polymerization can be expanded to donor–acceptor alternating copolymers. We anticipate that this method can serve as a platform to access new architectures of n‐type CPs without the need for transition‐metal catalysis.  相似文献   

4.
A new X‐shaped π‐conjugated monomer comprising of fluorene units and anthracene units was synthesized, and it was used to fabricate the new X‐shaped π‐conjugated polymers and investigate the properties of the new polymers. Using different molar ratios between such monomer and a fluorene monomer gave three polymers that showed higher absolute PL quantum yields than the linear polyfluorene (PF) in the solid state. After thermal annealing at 200 °C for 4 h, the linear PF showed an additional bathochromic emission at about 550 nm, whereas such red‐shifted emission was fully eliminated for the X‐shaped polymers. The electroluminescent devices based on the X‐shaped polymers with a configuration of ITO/PEDOT:PSS/polymer/LiF/Ca/Al displayed blue emission with low turn‐on voltage and high brightness. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5616–5625, 2008  相似文献   

5.
Chain‐growth catalyst‐transfer polycondensations of AB‐type monomers is a new and rapidly developing tool for the preparation of well‐defined π‐conjugated (semiconducting) polymers for various optoelectronic applications. Herein, we report the Pd/PtBu3‐catalyzed Negishi chain‐growth polycondensation of AB‐type monomers, which proceeds with unprecedented TONs of above 100 000 and TOFs of up to 280 s?1. In contrast, related AA/BB‐type step‐growth polycondensation proceeds with two orders of magnitude lower TONs and TOFs. A similar trend was observed in Suzuki‐type polycondensation. The key impact of the intramolecular (vs. intermolecular) catalyst‐transfer process on both polymerization kinetics and catalyst lifetime has been revealed.  相似文献   

6.
A comprehensive investigation on the synthesis and properties of a series of ferrocene‐containing (meth)acrylate monomers and their polymers that differ in the linkers between the ferrocene unit and the backbone was carried out. The side‐chain ferrocene‐containing polymers were prepared via atom transfer radical polymerization. The kinetic studies indicated that polymerization of most monomers followed a “controlled”/living manner. The polymerization rates were affected by the vinyl monomer structures and decreased with an increase of the linker length. Methacrylate polymerization was much faster than acrylate polymerization. The optical absorption of monomers and polymers was affected by the linkers. Thermal properties of these polymers can be tuned by controlling the length of the linker between the ferrocene unit and the backbone. By increasing the length of the linker, the glass transition temperature ranged from over 100 to ?20 °C. Electrochemical properties of both monomers and polymers were characterized. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
This article describes the synthesis of piperazine‐containing homopolymer systems via ring‐opening metathesis polymerization (ROMP). These systems were subsequently used as electron donors in the formation of charge‐transfer (CT) complexes. Using exo‐N‐(6‐bromohexyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxamide as a starting material, monomers were synthesized to act as electron donors. The amine group at the “open” end of the piperazine was either left open or alkylated with various alkyl groups. The monomers' ability to act as electron donors and their polymerization rates were studied. After initial photometric titration studies using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an electron acceptor proved that these monomers would act as electron donors, they were subsequently polymerized into homopolymers via ROMP. The experimental results showed that a methanol:chloroform mixed solvent system enhanced the rate of polymerization over a single solvent (chloroform) system. Studies also showed that the alkylated piperazine‐containing monomer had a faster rate of polymerization than the secondary piperazine monomer. These monomers were used to make piperazine‐containing homopolymers via ROMP and the resulting polymers, like the monomers, also functioned as electron donors. Potential functions of these polymers include electronics, solar cells, optical systems, and biological applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5034–5043, 2009  相似文献   

8.
This work describes the synthesis of π‐conjugated polymers possessing arylene and 1,3‐butadiene alternating units in the main chain by the reaction of α,β‐unsaturated ester/nitrile containing γ‐H with aromatic/heteroaromatic aldehyde compound. By using 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst to give a 1,3‐butadiene‐containing π‐conjugated polymer, poly(phenylene‐1,3‐butadiene), in 84.3% yield with and / (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π‐conjugated polymers containing 1,3‐butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six‐membered ring transition state and then a 1,5‐H shift intermediate.

  相似文献   


9.
We present the synthesis and characterization of a new family of perfectly alternating conjugated polymers, obtained through different methodologies (Stille, Direct Arylation, and Horner–Wadsworth–Emmons polymerizations). The polymers comprise either 2,5‐dialkoxybenzene or benzodithiophene electron rich units, and 1,2,4,5‐tetrafluorobenzene as the electron‐deficient unit, eventually separated by a vinylene bridge, if suitable monomers and HWE polymerization procedures are used. As shown by NMR spectroscopy, the introduction of the fluorinated aromatic units brings complications in the polymer stereodefinition in the HWE polymerization, and regiodefinition in the case of the Direct Arylation. The polymers show moderate degrees of polymerization (up to 10 repeating alternating units in the backbone), which are however significant enough to unravel interesting properties such as energy HOMO–LUMO gaps and aggregation behavior in solution at room temperature. In depth calculations fully confirmed the aggregation tendency, highlighting the key role of the benzodithiophene as the donor component when in combination with the tetrafluorobenzene unit. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1601–1610  相似文献   

10.
Entropy‐driven ROMP (ED‐ROMP) involves polymerization of olefin‐containing macrocyclic monomers under entropically favorable conditions. Macrocycles can be prepared from a variety of interesting molecules which, when polymerized, impart unique functionality to the resulting polymer backbone such as degradable linkages, biological moieties, crystallizable groups, or supramolecular hosts. In addition, the sequence of atoms in the cyclic monomer is preserved within the polymer repeating units, allowing for facile preparation of sequence‐defined polymers. In this review article, we consider how the mechanism of ROMP applies to ED polymerizations, how olefinic macrocycles are synthesized, and how polymerization conditions can be tuned to maximize conversion. Recent works in the past 10 years are highlighted, with emphasis on methods which can be employed to achieve fast polymerization kinetics and/or selective head‐to‐tail regiochemistry, thus improving polymerization control. ED‐ROMP, with its unique capability to produce polymers with well‐defined polymer backbone microstructure, represents an essential complement to other, well‐established, metathesis methodologies such as ROMP. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1621–1634  相似文献   

11.
A π‐conjugated poly(α‐dithienylen‐dithiafulvene) ( 2 ) was obtained by the oxidation polymerization of 2,6‐bis(2‐thienyl)‐1,4‐dithiafulvene ( 1 ) as a dithiafulvene monomer derived from 4‐(2‐thienyl)‐1,2,3‐thiadiazole. When a solution of 1 in CHCl3 was added to a stirred solution of FeCl3 in CHCl3, only the low‐molecular‐weight product 2 was obtained. The mixture was stirred for 15 h with an N2 flow. The polymerization at higher temperatures resulted in polymers with large insoluble fractions. A higher molecular weight polymer was obtained by the oxidation polymerization of a charge‐transfer complex of 1 with 7,7,8,8‐tetracyanoquinodimethane (compound 3 ). In contrast to 2 , polymer 4 was readily soluble in dimethyl sulfoxide, dimethylformamide, and acetone and partially soluble in tetrahydrofuran and methanol and had a larger molecular weight (peak top molecular weight = 37,000). The conductivity of polymer 4 was 3 orders of magnitude larger than that of polymer 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6592–6598, 2005  相似文献   

12.
A spectroscopic characterization of polymers containing rigid π‐conjugated oligo(phenyleneethynylene) chromophores as well as oligo(phenyleneethynylene) and methyl methacrylate is presented. The polymers exhibit molar masses of up to 15 000 g mol?1 and a degree of polymerization between 22 and 80. Emission measurements of the monomeric and polymeric species show that radiative as well as nonradiative rates are influenced by the degree of polymerization due to intramolecular interactions of chromophores pendant to the polymer backbone. Time‐resolved emission anisotropy measurements suggest that energy migrates within the polymers. Steady‐state emission anisotropy measurements also point to energy migration. Additionally, two oligo(phenyleneethynylene)s with different sizes of the conjugated system are copolymerized in order to enable energy trapping due to energy transfer. The shortened energy‐donor fluorescence lifetime within the donor–acceptor copolymers suggest energy transfer. Depending on the degree of polymerization, dispersion of the donor fluorescence lifetime is observed.  相似文献   

13.
The synthesis and optical properties of polymers bearing the repeating unit of terfluorene and various organosilicon groups were investigated. Polymers with high molecular weight and good solubility could be obtained by Suzuki coupling polymerization from silylene‐containing fluorene‐based dibromo monomers and 9,9‐dihexylfluorene‐2,7‐bis(trimethyleneborate). From UV spectra of polymers bearing acyclic silylene bridge, the organosilicon units not only interrupted a π‐conjugation but also contributed to an electronic communication between connected fluorenes. The emission maximum wavelengths (ca. 400 nm) blue‐shifted when compared with that of polyfluorene (418 nm) and the fluorescence quantum yields were considerably high (>0.82) in the CHCl3 solution. On the other hand, rather broad emission was observed at 480 nm and the fluorescence quantum yield was quite low (0.004) in the solution‐state PL spectrum of tetraphenylsilole‐containing polymer. The polymer emitted visible green light in the spin‐coated film. The fluorescence peak intensity at 486 nm gradually decreased when the film was illuminated with the UV light of 359 nm in air. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4786–4794, 2007  相似文献   

14.
A series of main‐chain metallopolymers ( P1–P10 ) was prepared by the self‐assembly of rigid‐linear π‐conjugated bis(terpyridine) monomers ( 1–10 ) with ZnII ions and was fully characterized. The polymerization was additionally confirmed by UV/vis titration experiments. A strong increase in viscosities (around 1.6 times) relative to those of the monomer solutions was found. The thermal stability of P1–P10 compared with that of 1–10 was enhanced as a result of the metallopolymerization. The electro‐optical properties of the materials were investigated in detail. Tuning of the electrochemical and photophysical properties was enabled; thus, bright purple to green photoluminescent (PL) emission (PL quantum yields of 0.12–0.81) for P1–P10 was observed in solution with the emission color strongly depending on the nature of the π‐conjugated bis(terpyridine) system. Thin homogeneous films of P6 were prepared by solution processing, that is, spin‐coating and inkjet‐printing, and exhibited intense yellow PL emission in the solid state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4083–4098, 2009  相似文献   

15.
Pyrene‐bridged boron subphthalocyanine dimers were synthesized from a mixed‐condensation reaction of 2,7‐di‐tert‐butyl‐4,5,9,10‐tetracyanopyrene and tetrafluorophthalonitrile, and their syn and anti isomers arising from the result of connecting two bowl‐shaped boron subphthalocyanine molecules were successfully separated. Expansion of the conjugated system of boron subphthalocyanine through a pyrene bridge caused a redshift of the Q band absorption relative to the parent pyrene‐fused monomer, whereas combining the curved π‐conjugation of boron subphthalocyanine with the planar π‐conjugation of pyrene enabled facile embracement of C60 molecules, owing to the enhanced concave–convex π–π stacking interactions.  相似文献   

16.
We report a new series of polyurethane–oligo(phenylenevinylene) (OPV) random copolymers and their self‐assembled nanomaterials such as pores, vesicles, and luminescent spheres. The polymers were synthesized through melt transurethane process by reacting a hydroxyl‐functionalized OPV with diurethane monomer and diol under solvent‐free and nonisocyanate conditions. The amount of OPV was varied up to 50 mol % in the feed to incorporate various amounts of π‐conjugated segments in the polyurethane backbone. The π‐conjugated segmented polymers were subjected to solvent induced self‐organization in THF or THF+water to produce variety of morphologies ranging from pores (500 nm to 1 μm) to spheres (100 nm to 2 μm). Upon shining 370‐nm light, the dark solid nanospheres of the copolymers transformed into blue luminescent nanoballs under fluorescence microscope. The mechanistic aspects of the self‐organization process were studied using solution FTIR and photophysical techniques such as absorption and emission to trace the factors which control the morphology. FTIR studies revealed that the hydrogen bonding plays a significant role in the copolymers with lower amount of OPV units. Time resolved fluorescent decay measurements of copolymers revealed that molecular aggregation via π‐conjugated segments play a major role in the samples with higher OPV content in the random block polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 46: 5897–5915, 2008  相似文献   

17.
Deprotonation usually occurs as an unwanted side reaction in the Lewis pair polymerization of Michael acceptors, for which the conjugated addition of the Lewis base to the acid‐activated monomer is the commonly accepted initiation mechanism. This has also been reported for B?P‐based bridged Lewis pairs (BLPs) that form macrocyclic addition products. We now show that the formerly unwanted deprotonation is the likely initiation pathway in the case of Al?P‐based BLPs. In a detailed study of a series of Al?P‐based BLPs, using a combination of single‐crystal diffraction experiments (X‐ray and neutron) and mechanistic investigations (experimental and computational), an active role of the methylene bridge was revealed, acting as a base towards the α‐acidic monomers. Additionally, the polymerization studies proved a living behavior combined with significantly high activities, narrow molecular mass distributions, and the possibility of copolymerization.  相似文献   

18.
The synthesis of crystalline helical polymers of trehalose via topochemical azide–alkyne cycloaddition (TAAC) of a trehalose‐based monomer is presented. An unsymmetrical trehalose derivative having azide and alkyne crystallizes in two different forms having almost similar packing. Upon heating, both the crystals undergo TAAC reaction to form crystalline polymers. Powder X‐ray diffraction (PXRD) studies revealed that the monomers in both the crystals polymerize in a crystal‐to‐crystal fashion; circular dichroism (CD) studies of the product crystals revealed that the formed polymer is helically ordered. This solvent‐free, catalyst‐free polymerization method that eliminates the tedious purification of the polymeric product exemplifies the advantage of topochemical polymerization reaction over traditional solution‐phase polymerization.  相似文献   

19.
Heterotelechelic polymers were synthesized by a kinetic telechelic ring‐opening metathesis polymerization method relying on the regioselective cross‐metathesis of the propagating Grubbs’ first‐generation catalyst with cinnamyl alcohol derivatives. This procedure allowed the synthesis of hetero‐bis‐end‐functional polymers in a one‐pot setup. The molecular weight of the polymers could be controlled by varying the ratio between cinnamyl alcohol derivatives and monomer. The end functional groups can be changed using different aromatically substituted cinnamyl alcohol derivatives. Different monomers were investigated and the presence of the functional groups was shown by NMR spectroscopy and MALDI‐ToF mass spectrometry. Labeling experiments with dyes were conducted to demonstrate the orthogonal addressability of both chain ends of the heterotelechelic polymers obtained.  相似文献   

20.
This study demonstrates that single‐chain π‐conjugated systems can be made electrically conductive by modifying the molecular structures of both ends of the oligomers making up a polymer. That is, the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gaps of a fairly long polyyne‐type oligomer with appropriately modified molecular structures at both ends are found to be on the order of thermal energy by calculations using density functional theory (DFT) with B3LYP functionals. This result applies to molecular structures with characteristic bond alternations. The peculiar bond alternations are caused by competition between two effects of the bond alternations of the two mutually perpendicular π‐conjugated systems, which partially cancel each other out. It is probable that we can design one‐dimensional polymers with HOMO–LUMO gaps small enough to be conductive by combining the above‐mentioned oligomers with each other as monomer units in the polymer. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号