首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Perovskite lead halides (CH3NH3PbI3) have recently taken a promising position in photovoltaics and optoelectronics because of remarkable semiconducting properties and possible ferroelectricity. However, the potential toxicity of lead arouses great environmental concern for widespread application. A new chemically tailored lead‐free semiconducting hybrid ferroelectric is reported, N‐methylpyrrolidinium)3Sb2Br9 ( 1 ), which consists of a zero‐dimensional (0‐D) perovskite‐like anionic framework connected by corner‐ sharing SbBr6 coordinated octahedra. It presents a large ferroelectric spontaneous polarization of approximately 7.6 μC cm?2, as well as notable semiconducting properties, including positive temperature‐dependent conductivity and ultraviolet‐sensitive photoconductivity. Theoretical analysis of electronic structure and energy gap discloses a dominant contribution of the 0‐D perovskite‐like structure to the semiconducting properties of the material. This finding throws light on the rational design of new perovskite‐like hybrids, especially lead‐free semiconducting ferroelectrics.  相似文献   

2.
Two‐dimensional boron sheets (borophenes) have been successfully synthesized in experiments and are expected to exhibit intriguing transport properties. A comprehensive first‐principles study is reported of the intrinsic electrical resistivity of emerging borophene structures. The resistivity is highly dependent on different polymorphs and electron densities of borophene. Interestingly, a universal behavior of the intrinsic resistivity is well‐described using the Bloch–Grüneisen model. In contrast to graphene and conventional metals, the intrinsic resistivity of borophenes can be easily tuned by adjusting carrier densities, while the Bloch–Grüneisen temperature is nearly fixed at 100 K. This work suggests that monolayer boron can serve as intriguing platform for realizing tunable two‐dimensional electronic devices.  相似文献   

3.
Triazine‐based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene‐type, two‐dimensional, and metal‐free materials. Although hailed as a promising low‐band‐gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction‐dependent electrical measurements and time‐resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge‐carrier mobilities in this layered material “beyond graphene”. Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge‐transport behavior based on observed carrier dynamics and random‐walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction‐dependent layered semiconductor for applications in field‐effect transistors (FETs) and sensors.  相似文献   

4.
Organic–inorganic hybrid perovskites have attracted significant attention owing to their extraordinary optoelectronic properties with applications in the fields of solar energy, lighting, photodetectors, and lasers. The rational design of these hybrid materials is a key factor in the optimization of their performance in perovskite‐based devices. Herein, a mechanochemical approach is proposed as a highly efficient, simple, and reproducible method for the preparation of four types of hybrid perovskites, which were obtained in large amounts as polycrystalline powders with high purity and excellent optoelectronics properties. Two archetypal three‐dimensional (3D) perovskites (MAPbI3 and FAPbI3) were synthesized, together with a bidimensional (2D) perovskite (Gua2PbI4) and a “double‐chain” one‐dimensional (1D) perovskite (GuaPbI3), whose structure was elucidated by X‐ray diffraction.  相似文献   

5.
We report three‐dimensional (3D) nanoporous graphene with preserved 2D electronic properties, tunable pore sizes, and high electron mobility for electronic applications. The complex 3D network comprised of interconnected graphene retains a 2D coherent electron system of massless Dirac fermions. The transport properties of the nanoporous graphene show a semiconducting behavior and strong pore‐size dependence, together with unique angular independence. The free‐standing, large‐scale nanoporous graphene with 2D electronic properties and high electron mobility holds great promise for practical applications in 3D electronic devices.  相似文献   

6.
TiO2 nanoparticles are of great current interest for applications in photo‐electronic materials including light‐energy conversion, artificial photosynthetic systems as well as photocatalysis. The success of these applications relies on the exciton recombination dynamics and visible‐light sensitivity of the TiO2 nanomaterials. Thus, in order to develop the highly efficient photo‐electronic materials absorbing visible light, different low dimensional TiO2 nanostructures such as nanodiscs, nanofibers and nanochains were synthesized, and thereafter their surfaces were modified by incorporating with Sn‐porphyrins and heteropoly acid. The optoelectronic properties of the surface‐modified nanomaterials were investigated with regard to the optical properties and the surface exciton dynamics by using both steady‐state and ultrafast time‐resolved laser spectroscopic techniques including single nanoparticle photoluminescence technique. These results were correlated with the photo‐electronic properties including photocatalytic activities and solar cell efficiencies, indicating that the electron transfer mechanism in the modified nanostructures may be similar to the “Z‐scheme” of the plant photosynthetic system so that both photocatalytic activity and solar cell efficiencies were synergistically enhanced by using two color illumination.  相似文献   

7.
The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero‐dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite‐derived zero‐dimensional SnII material Cs4SnBr6 is presented that exhibits room‐temperature broad‐band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs4?xAxSn(Br1?yIy)6 (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self‐trapped exciton emission bands.  相似文献   

8.
Cesium‐based perovskite nanocrystals (NCs) have outstanding photophysical properties improving the performances of lighting devices. Fundamental studies on excitonic properties and hot‐carrier dynamics in perovskite NCs further suggest that these materials show higher efficiencies compared to the bulk form of perovskites. However, the relaxation rates and pathways of hot‐carriers are still being elucidated. By using ultrafast transient spectroscopy and calculating electronic band structures, we investigated the dependence of halide in Cs‐based perovskite (CsPbX3 with X=Br, I, or their mixtures) NCs on the hot‐carrier relaxation processes. All samples exhibit ultrafast (<0.6 ps) hot‐carrier relaxation dynamics with following order: CsPbBr3 (310 fs)>CsPbBr1.5I1.5 (380 fs)>CsPbI3 NC (580 fs). These result accounts for a reduced light emission efficiency of CsPbI3 NC compared to CsPbBr3 NC.  相似文献   

9.
The structure and electronic structure of layered noble‐transition‐metal dichalcogenides MX2 (M=Pt and Pd, and chalcogenides X=S, Se, and Te) have been investigated by periodic density functional theory (DFT) calculations. The MS2 monolayers are indirect band‐gap semiconductors whereas the MSe2 and MTe2 analogues show significantly smaller band gap and can even become semimetallic or metallic materials. Under mechanical strain these MX2 materials become quasi‐direct band‐gap semiconductors. The mechanical‐deformation and electron‐transport properties of these materials indicate their potential application in flexible nanoelectronics.  相似文献   

10.
One‐dimensional (1D) nanostructured oxides are proposed as excellent electron transport materials (ETMs) for perovskite solar cells (PSCs); however, experimental evidence is lacking. A facile hydrothermal approach was employed to grow highly oriented anatase TiO2 nanopyramid arrays and demonstrate their application in PSCs. The oriented TiO2 nanopyramid arrays afford sufficient contact area for electron extraction and increase light transmission. Moreover, the nanopyramid array/perovskite system exhibits an oriented electric field that can increase charge separation and accelerate charge transport, thereby suppressing charge recombination. The anatase TiO2 nanopyramid array‐based PSCs deliver a champion power conversion efficiency of approximately 22.5 %, which is the highest power conversion efficiency reported to date for PSCs consisting of 1D ETMs. This work demonstrates that the rational design of 1D ETMs can achieve PSCs that perform as well as typical mesoscopic and planar PSCs.  相似文献   

11.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi?I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

12.
Formamidinium (FA) lead iodide perovskite materials feature promising photovoltaic performances and superior thermal stabilities. However, conversion of the perovskite α‐FAPbI3 phase to the thermodynamically stable yet photovoltaically inactive δ‐FAPbI3 phase compromises the photovoltaic performance. A strategy is presented to address this challenge by using low‐dimensional hybrid perovskite materials comprising guaninium (G) organic spacer layers that act as stabilizers of the three‐dimensional α‐FAPbI3 phase. The underlying mode of interaction at the atomic level is unraveled by means of solid‐state nuclear magnetic resonance spectroscopy, X‐ray crystallography, transmission electron microscopy, molecular dynamics simulations, and DFT calculations. Low‐dimensional‐phase‐containing hybrid FAPbI3 perovskite solar cells are obtained with improved performance and enhanced long‐term stability.  相似文献   

13.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

14.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

15.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

16.
This review article focuses on the structures and properties of novel hybrid nanocarbon materials, which are created by incorporating atoms and molecules into the hollow spaces of carbon nanotubes (CNTs); thus they are called nanopeapods. After dealing with synthesis procedures, we discuss the structures and electronic properties of the hybrid materials based on high‐resolution transmission electron microscopy (HRTEM), electron energy‐loss spectroscopy (EELS), X‐ray and electron diffraction, scanning tunneling microscopy (STM), and field‐effect transistor transport measurements. Utilization of the low‐dimensional nanosized spaces of CNTs to produce novel low‐dimensional nanocluster, nanowire, and nanotube materials is also discussed.  相似文献   

17.
Transition metal dichalcogenides (TMDs) possess a large number of two‐dimensional (2D) materials with novel physical and chemical properties and hold great potential applications in electronic devices, optical devices as well as catalysts. TMDs usually have poly‐phases, such as 2H, 3R and 1T. Chemical and physical properties, including electrical conductivity, superconductivity, magnetism and catalytic activity, are different for different phases of TMDs. Therefore, great efforts have been made to obtain a specific pure phase of 2D TMD materials. Here, we review the recent phase engineering research for 2D TMDs, including ion insertion, alloying, temperature, defects, strain and electric field.  相似文献   

18.
Strong interchain interactions render unsubstituted polythiophene un‐fusible, non‐melting, and insoluble. Therefore, control of the packing structure, which has a profound effect on the optical and electronic properties of the polymer, has never been achieved. Unsubstituted polythiophene was prepared in the one‐dimensional channels of [La(1,3,5‐benzenetrisbenzoate)]n, where polymer chains form unprecedented assembly structures mediated by the host framework. It is noteworthy that the emission and carrier transport properties were drastically changed by varying the number of chains within a particular assembly. The response of the composite to additional guests is also examined as a method to use the composites as low‐concentration sensors. Our findings show that the encapsulation of polymer chains in host materials is a facile method for understanding the intrinsic properties of conjugated polymers, along with controlling and enhancing their functions.  相似文献   

19.
1,4‐butanediamine (BEA) is incorporated into FASnI3 (FA=formamidinium) to develop a series of lead‐free low‐dimensional Dion–Jacobson‐phase perovskites, (BEA)FAn?1SnnI3n+1. The broadness of the (BEA)FA2Sn3I10 band gap appears to be influenced by the structural distortion owing to high symmetry. The introduction of BEA ligand stabilizes the low‐dimensional perovskite structure (formation energy ca. 106 j mol?1), which inhibits the oxidation of Sn2+. The compact (BEA)FA2Sn3I10 dominated film enables a weakened carrier localization mechanism with a charge transfer time of only 0.36 ps among the quantum wells, resulting in a carrier diffusion length over 450 nm for electrons and 340 nm for holes, respectively. Solar cell fabrication with (BEA)FA2Sn3I10 delivers a power conversion efficiency (PCE) of 6.43 % with negligible hysteresis. The devices can retain over 90 % of their initial PCE after 1000 h without encapsulation under N2 environment.  相似文献   

20.
With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two‐ and three‐dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two‐ and three‐layer systems resulted in the construction of a three‐dimensional supertetrahedral borane crystal structure. The two‐dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three‐dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm−3) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号